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Fig. 1. We compare two of the estimators predicted by our theory (photon planes, 0D blur and 1D blur) to photon beams on the Doorway scene. We show the
full light transport (left image) and estimates of the multiply scattered volumetric transport obtained from each of the three techniques (right images, insets
taken from black rectangle). At equal render time, both of our estimators provide substantial image quality improvement and variance decrease.

Wedevelop a theory of volumetric density estimationwhich generalizes prior

photon point (0D) and beam (1D) approaches to a broader class of estimators

using “nD” samples along photon and/or camera subpaths. Volumetric pho-

ton mapping performs density estimation by point sampling propagation

distances within the medium and performing density estimation over the

generated points (0D). Beam-based (1D) approaches consider the expected

value of this distance sampling process along the last camera and/or light

subpath segments. Our theory shows how to replace propagation distance

sampling steps across multiple bounces to form higher-dimensional samples

such as photon planes (2D), photon volumes (3D), their camera path equiv-

alents, and beyond. We perform a theoretical error analysis which reveals

that in scenarios where beams already outperform points, each additional

dimension of nD samples compounds these benefits further. Moreover, each

additional sample dimension reduces the required dimensionality of the

blurring needed for density estimation, allowing us to formulate, for the

first time, fully unbiased forms of volumetric photon mapping. We demon-

strate practical implementations of several of the new estimators our theory

predicts, including both biased and unbiased variants, and show that they

outperform state-of-the-art beam-based volumetric photon mapping by a

factor of 2.4–40×.
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1 INTRODUCTION
Light scattering in participating media is responsible for the ap-

pearance of many materials (such as clouds, fog, juices, or our own

skin). Unfortunately, simulating these effects accurately and effi-

ciently remains a notoriously difficult problem since it requires

solving not only the rendering equation [Immel et al. 1986; Kajiya

1986], but also its volumetric generalization, the radiative transfer

equation [Chandrasekhar 1960].

Due to decades of research, practitioners now have an arsenal

of competing and complementary rendering techniques to tackle

this problem. Path tracing [Lafortune and Willems 1993; Veach and

Guibas 1994, 1997] and its volumetric variants [Georgiev et al. 2013;

Lafortune and Willems 1996] have become one of the dominant

forms of Monte Carlo (MC) light transport simulation in graphics

due to their simplicity, generality, and ability to produce unbiased

results where the only error is noise. Photon density estimation
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Fig. 2. We generalize 0D photon points (a) and 1D beams (b) to produce progressively higher-dimensional nD samples such as 2D “photon planes” (c) and 3D
“photon volumes” (d). We form these estimators by computing the limit process of “marching” or sweeping photons along preceding light path segments,
which allows us to progressively reduce variance and bias. The motivational experiment in the bottom row uses these successive estimators (each shown
vertically split at two sample counts) on a searchlight problem setup (left), confirming that higher-order nD samples have the potential to dramatically
improve quality in volumetric light transport.

approaches [Jensen 2001; Jensen and Christensen 1998], can robustly

simulate light paths that are difficult for path tracing, though at the

cost of introducing bias due to blurring. Recent work has combined

path integration and photon density estimation [Georgiev et al. 2012;

Hachisuka et al. 2012] to retain each one’s complementary benefits.

Despite their increasing sophistication, all of the aforementioned

methods can be viewed in Veach’s path integral formulation [Pauly

et al. 2000; Veach 1997] as MC integration using point sampling. In
this view, the concatenated coordinates of a light path’s vertices

correspond to a single high-dimensional point, where the integrand

expresses the amount of light transported along the path.

Recently, researchers have argued that such point sampling is

an unnecessary legacy from surface rendering, leading to the de-

velopment of line or “beam” samples in the volumetric rendering

context. Jarosz et al. [2008] proposed (1D) line samples along camera

rays, and later [2011a] formed a generalized theory of volumetric

density estimators using lines along camera rays, photon path seg-

ments, or both. This offered substantial variance reduction, but

also bias reduction since such beams lower the required blur di-

mensionality. Progressive formulations [Jarosz et al. 2011b] and

combinations [Křivánek et al. 2014] with volumetric path tracing

have helped to further reduce bias and improve robustness. Unfor-

tunately, despite these improvements, variance continues to be a

problem, and since some amount of blur is still required to employ

such beam estimators, bias remains.

In this paper we show that existing estimators (Sec. 3) using

points (0D) and beams (1D) are just special cases of a more general

theory (Sec. 4) of volumetric light transport simulation using higher-

dimensional (nD) samples. Our theory operates by successively

replacing propagation distance point samples with lines across mul-
tiple bounces to produce 2D (plane/quad) samples, 3D (volume/paral-

lelepiped) samples, their camera path equivalents, and beyond. Fig. 2

(top) illustrates this process, and (bottom) demonstrates the poten-

tial of using the corresponding estimators for a simple volumetric

lighting simulation. We perform a theoretical error analysis (Sec. 5)

which reveals that in scenarios where 1D beams provide error reduc-

tion compared to 0D points, we should expect higher-dimensional

samples to provide asymptotically greater improvements. Moreover,

higher-dimensional samples provide greater flexibility to reduce the

dimensionality of density estimation blur, allowing us to formulate

completely unbiased volumetric density estimators. Fig. 1 shows that
photon planes allow for a 3× reduction in variance compared to

photon beams while simultaneously producing an unbiased result,

or a 20× improvement when allowing for the same amount of bias

as photon beams. We discuss how to develop these estimators into

practical rendering algorithms (Sec. 6) and show how they outper-

form photon beams by a factor of 2.4–40× for a wide range of scenes

(Sec. 7). Since our theory predicts an infinite set of new estimators,

we discuss the ample opportunities for future work in Sec. 8.

2 PREVIOUS WORK
We focus primarily on prior work for participating media rendering

and related problems which leverage higher-dimensional samples.

Refer to Pharr et al. [2016] for a more extensive and general survey.

Lines/beams in photon mapping. Havran et al. [2005] were the first
to propose using photon path segments, and not vertices, to perform

density estimation, in an effort to reduce boundary bias for surface

illumination. Jarosz and colleagues [2008] initially proposed using

beams to find photons along entire camera rays in volumes and

later [2011a] generalized this idea to a collection of estimators that

allow using beams along either the camera ray or light ray, or both.

Sun et al. [2010] concurrently proposed a method for caustics and

single scattering that corresponds to one of these estimators. Jarosz

et al. [2011b] later derived beam estimators akin to progressive pho-

ton mapping [Hachisuka and Jensen 2009; Hachisuka et al. 2008;

Knaus and Zwicker 2011] and introduced an unbiased “short” form

of beam to avoid expensive and biased heterogeneous transmittance

evaluations. All of these volumetric approaches can be viewed as
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using line samples to collapse one or two dimensions of the vol-

ume rendering equation. Our theory generalizes this concept by

collapsing an arbitrary number of propagation distance dimensions.

Lines/beams inMC path sampling. Novák and collaborators [2012a;
2012b] applied the insights from photon beams to virtual ray/beam

lights to provably reduce the singularities that often plague many-

light rendering techniques [Dachsbacher et al. 2014]. Georgiev et al.

[2013] extended these ideas by reformulating volumetric path trac-

ing and bidirectional path tracing to operate on path segments

instead of vertices, reducing variance and singularities. Křivánek

et al. [2014] combined point and beam density estimators with bidi-

rectional path tracing using MIS [Veach and Guibas 1995]. All of

these approaches resorted to MC point sampling to leverage beams

in an unbiased context. We show that the extra degrees of freedom

in volumetric light transport allow devising higher-dimensional

density estimators that can avoid point sampling while obtaining

unbiased results. Moreover, our theory could have potential future

applications for, or could be combined with MC path sampling tech-

niques, much as these prior methods have done for beams.

Lines and nD samples for other rendering problems. Several re-
searchers have proposed MC-like approaches using 1D samples to

collapse other dimensions of the rendering integral. Applications

have included anti-aliasing [Jones and Perry 2000], hemispheri-

cal visibility and motion blur [Gribel et al. 2011, 2010], depth of

field [Tzeng et al. 2012], hair rendering [Barringer et al. 2012], soft

shadows [Billen and Dutré 2016], and masked environment light-

ing [Nowrouzezahrai et al. 2014]. Since evaluating nD samples ef-

fectively involves computing an nD integral, harnessing analytic

solutions to rendering sub-problems can be viewed as a form of line

or nD sampling, including semi-analytic solutions to the so-called

airlight integral in homogeneous participating media [Pegoraro and

Parker 2009; Sun et al. 2005], seminal work on closed-form area

lighting on diffuse and glossy surfaces [Arvo 1995a,b; Chen and

Arvo 2001, 2000], or analytic solutions to form factors [Schröder

and Hanrahan 1993]. We focus on the volumetric problem, devising

the theory that allows collapsing multiple dimensions of the light

transport integral.

Neutron transport. Graphics has a long history of importing tech-

niques from related fields such as neutron transport [Arvo 1993;

Arvo and Kirk 1990; D’Eon and Irving 2011]. Křivánek et al. [2014]

recently established a firmmathematical link between photon points

[Jensen and Christensen 1998], short beams [Jarosz et al. 2011b] and

long beams [Jarosz et al. 2011a], and “collision”, “track-length”, and

“expected valued” transmittance estimators developed in neutron

transport some fifty years ago [Lux 1978; Spanier 1966; Spanier

and Gelbard 1969] (we briefly review these in Sec. 3). Our theory

generalizes track-length and expected value estimators to evaluate

transmittance across multiple bounces, and could have potential

applications in related fields.

3 BACKGROUND
We begin by defining our notation and briefly reviewing volumetric

light transport. We then summarize existing volumetric estimators

most relevant to our work using our notation.

3.1 Light Transport in Participating Media
Light transport can be most generally described using the path

integral framework [Veach 1997], where the intensity of some pixel

measurement I is defined as an integral, I =
∫
Ω
f (z)dµ(z), over the

space Ω of light transport paths z with path throughput f (z).
The path integral can be approximated by an MC estimator I ≈

1

m
∑m
i=1

f (zi )
p(zi ) , which averages the contribution ofm transport paths

sampled with probability density p(z).

In photon mapping, complete transport paths z = xlyk are de-

composed into a photon subpath xl and a camera subpath yk , where
density estimation is performed at the vertex pair xlyk .

Photon subpath. The photon subpath xl = x0 . . . xl is a length-l
path with l ≥ 1 segments and l + 1 vertices. The first vertex x0
resides on the light, x1 . . . xl−1 are scattering vertices on surfaces

or in a medium, and the last vertex xl will be connected to a camera

subpath using density estimation.

We assume photon paths are constructed starting at the light

by first sampling x0 with pdf p(x0) and then sampling a sequence

of directions and distances, which we denote ω = ω1 . . .ωl and
t = t1 . . . tl respectively. The i-th vertex is therefore xi = xi−1+tiωi ,
where ti and ωi denote the distance and direction arriving at vertex

xi , not leaving it. The subpath pdf can therefore be decomposed as:

p(xl ) = p(x0)p(ωl )p(t l ), with: (1)

p(ωl ) =
l∏
i=1

p(ωi ), and p(t l ) =
l∏

i=1
p(t i ). (2)

The throughput along a photon subpath f (xl ) is the product of the
light’s emission Le and the directional, f (ωl ), and distance, f (t l ),
throughput terms along each path vertex and segment, respectively:

f (xl ) = Le(x0,ω1) f (ωl ) f (t l ), with: (3)

f (ωl ) =
l∏
i=1

f (ωi ), and f (t l ) =
l∏
i=1

f (t i ). (4)

At each vertex, the directional throughput is a generalized scattering

term that accounts for the phase function or BRDF:

f (ωi ) =
{
ρs(ωi →ωi+1) if xi is on a surface, and

ρp(ωi →ωi+1)σs if xi is in a medium,

(5)

where σs is the scattering coefficient.

Additionally, the propagation distance throughput accounts for

binary visibility V and transmittance Tr along the i-th segment:

f (ti ) = V (ti )Tr(ti ), with Tr(t) = e
−tσt , (6)

with extinction coefficient σt , assuming homogeneous media.

We also define a shorthand for the photon subpath contribution,

or weight up to vertex l :

C(ωl ) =
f (ωl )
p(ωl )

, and C(t l ) =
f (t l )
p(t l )

. (7)
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Camera subpath. The photon subpath xl is connected to a camera

subpath yk = yk . . . y0 which is traced from the opposite direction,

starting at the camera located at y0. All the previously defined func-

tions for throughput, pdf, and contribution are defined analogously

for camera subpaths, with the only exception that the sensor impor-

tanceWe replaces the emitted radiance Le in the subpath throughput
Eq. (3). We use si and ω

′
i to denote the distance and direction arriv-

ing at camera subpath vertex yi , to distinguish from the ti and ωi
notation used for light subpaths.

3.2 Density Estimators
We define density estimators in terms of approximations to the

complete path throughput,

f (z)
p(z) ≈ C(ωl )C(t l−1)⟨D⟩l,kC(sk−1)C(ω ′

k ), (8)

where ⟨D⟩l,k is the density estimator at the vertex pair xlyk .

Photon point–sensor point (0D×0D, 3D blur): The original volu-
metric density estimator connects a photon point to a sensor point

using a 3D blur [Jensen and Christensen 1998]:

⟨D⟩l,k
P-P3D

=
f (tl )
p(tl )︸︷︷︸

photon sampling

{
K3(xl , yk )f l,kω

} f (sk )
p(sk )︸︷︷︸

query point sampling

, (9)

where K3 evaluates a 3D blur kernel at the vertices xlyk , and f l,kω =

ρp(ωl →−ω ′
k )σs evaluates the scattering function at the connection

point using the last photon and camera subpath directions.

Photon point–sensor beam (0D×1D, 2D blur): Jarosz et al. [2008]
later extended this estimator to use sensor rays instead of sensor

points by replacing the last distance sampling step on the camera

subpath f (sk )/p(sk ) in Eq. (9) with an expected value estimator

while simultaneously reducing the kernel to 2D:

⟨D⟩l,k
P-B2D

=
f (tl )
p(tl )

{
K2(xl , yk )f l,kω

}
f (s∗k )︸︷︷︸

expected value

, (10)

where s∗k is the camera ray × photon disc intersection distance.

Photon beam–sensor beam (1D×1D, 2D blur): Photon beams result

from replacing the last distance sampling step on the light subpath

f (tl )/p(tl ) with an expected value estimator, in a fashion similar to

sensor beams. If we start with Eq. (9), we obtain [Jarosz et al. 2011a]:

⟨D⟩l,k
B-B2D

=

∫ sk+

sk−
f (t̃l )︸︷︷︸

expected value

{
K2(xl , ỹk )f l,kω

}
f (s) ds, (11)

where the integral bounds are defined by the intersection between

the camera ray and the photon beam, and variables t̃l , ỹk are func-

tions of the integration variable s .

Photon beam–sensor beam (1D×1D, 1D blur): Similarly, if Eq. (10)

is used, we obtain

⟨D⟩l,k
B-B1D

= f (t∗l )
{
K1(xl , yk )
J l,k
B-B1D

f l,kω

}
f (s∗k ), (12)

(a) collision (b) track-length (c) expected-value

Fig. 3. Collision estimators (a) check if the sampled ti distances fall within
an interval centered at t ; track-length estimators (b) check if the ti fall past
distance t ; and expected value estimators evaluate transmittance directly.

where the integral is replaced by the Jacobian for 1D×1D coupling

with 1D blur, J l,k
B-B1D

= ∥ωl ×ω ′
k ∥, and t

∗
l , s

∗
k are the distances to the

beam-beam intersection along the photon and camera segments.

“Long” and “short” beams. The original volumetric photon map-

ping approach (Eq. (9)) corresponds to estimating transmittancewith

a “collision” estimator (Fig. 3 (a)) from neutron transport [Spanier

and Gelbard 1969], where a photon scores a constant contribution

if it falls within a finite interval (the blur kernel). The subsequent

beam estimators replace a distance sampling step along the camera

and/or light path segment with a direct evaluation of transmittance.

This corresponds to an “expected value” estimator (Fig. 3 (c)), so

called because it returns the expected value of the propagation sam-

pling process (the transmittance) directly [Spanier 1966]. These

estimators result in “long” beams with infinite extent, which reduce

variance, but also have a few undesirable properties: Their infinite

extent makes them challenging to incorporate into acceleration

structures, and the appearance of a factor f (tl ) on its own requires

the evaluation of a transmittance term at every estimation point,

which can be costly in heterogeneous media.

Jarosz et al. [2011b] replaced this transmittance term with an

unbiased estimate ⟨f (tl )⟩T , which is equivalent to a constant step

function that drops to zero after a randomly sampled propagation

distance. Such a transmittance estimator results in a “short” beam

of finite extent and constant transmittance. This corresponds to

estimating transmittance with a “track-length” estimator [Spanier

1966] from neutron transport (Fig. 3 (b)), which scores a constant

value if the sampled distance lies beyond the estimation point.

In the next section, we will work with the expected value (long)

forms of these estimators, as this will simplify our derivations, but

we will subsequently replace the directly evaluated transmittance

with its unbiased track-length estimate to form the short versions.

4 RADIANCE ESTIMATION WITH nD PHOTONS
We now generalize the concept of point and beam estimators to

arbitrary dimensions, which is one of our primary contributions.

Our key insight is we can convert additional propagation distance

steps to their expected values by unfolding the photon throughput

prefix C(t l ). We describe our approach by deriving novel two- and

three-dimensional density estimators in detail; the same method

can then be applied repeatedly to even higher dimensions.
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Photon plane–sensor beam (2D×1D, 1D blur): We begin by insert-

ing the B-B2D density estimator Eq. (11) into Eq. (8) to obtain

f (z)
p(z) ≈ C(ωl )C(t l−1)⟨D⟩l,k

B-B2D
C(sk−1)C(ω ′

k ) (13)

= C(ωl )C(t l−2)
{
f (tl−1)
p(tl−1)

⟨D⟩l,k
B-B2D

}
C(sk−1)C(ω ′

k ).

The last step was achieved by assuming l ≥ 2 and expandingC(t l−1)
by one term. We will name the quantity inside the braces ⟨D⟩l−1,k

B-B2D
,

which is a B-B2D estimator that performs one additional distance

sampling step. Expanding this quantity yields

⟨D⟩l−1,k
B-B2D

=
f (tl−1)
p(tl−1)

∫ sk+

sk−
f (t̃l )

{
K2(xl , ỹk )f l,kω

}
f (s) ds . (14)

The first term on the right-hand side is the result of distance sam-

pling, which is used to ob-

tain tl−1. We now replace this

distance sampling step with a

deterministic “beam marching”

procedure (right). Instead of

sampling the location of a sin-

gle beam, we place a series of

beams at regular intervals along

the ray xl−2 + ωl−1t
(i)
l−1. We set

the ray offset of each beam to t
(i)
l−1 = i∆t , where ∆t is the step size.

We select a blurring kernel which is uniform along one dimension,

K2(xl , yk ) = u−1K1(xl , yk ), whereu defines the uniform blur extent,

and the direction of the uniform blurring is as in the figure above.

The contribution of this estimator then becomes a sum,∑
i=0

f (t (i)l−1)∆t
∫ s (i )k+

s (i )k−
f (t̃l )

{
K1(xl , ỹk )

u
f l,kω

}
f (s) ds . (15)

Because of the deterministic marching procedure, the inverse sam-

pling densityp(tl−1)−1 becomes∆t . We now choose the uniform blur

extent such that kernels of adjacent beams touch exactly, making

s
(i)
k+ = s

(i+1)
k− . This is achieved with u = ∆t ∥ωl−1 ×ωl ∥. Substituting

into Eq. (15) and rearranging yields∑
i=0

∫ s (i+1)k−

s (i )k−
f (t (i)l−1)f (t̃l )∆t


K1(xl , ỹk )
∆t J l−1,l

Q-B1D

f l,kω

 f (s) ds, (16)

with J l−1,l
Q-B1D

= ∥ωl−1 × ωl ∥. The constant ∆t can be moved into the

braces and cancels. Taking the limit as ∆t → 0 merges the beams

into a continuous photon plane with contribution

⟨D⟩l−1,k
Q-B1D

=

∫ sk+

sk−
f (t̃l−1)f (t̃l )


K1(xl , ỹk )
J l−1,l
Q-B1D

f l,kω

 f (s) ds . (17)

Photon plane–sensor beam (2D×1D, 0D blur): In a similar fashion,

we now insert the B-B1D estimator (Eq. (12)) into Eq. (8) and expand

the distance throughput term to obtain the quantity

⟨D⟩l−1,k
B-B1D

=
f (tl−1)
p(tl−1)

f (t∗l )
{
K1(xl , yk )
J l,k
B-B1D

f l,kω

}
f (s∗k ). (18)

Again, we replace distance sampling along tl−1 with a determinis-

tic beam marching procedure. We choose a uniform blurring ker-

nel K1(xl , yk ) = u−1 with blur extent u. The direction of the blur

®u = (ωl × ω ′
k )/∥ωl × ω ′

k ∥ is oriented orthogonal to the last photon

and camera subpath directions (see figure below).

Front view Side view

The contribution then becomes∑
i=0

f (t (i)l−1)∆t f (t
∗(i)
l )

{
K1(xl , yk )
J l,k
B-B1D

f l,kω

}
f (s∗(i)k ). (19)

We chooseu such that kernels of adjacent beams touch exactly when

viewed from ω ′
k . This can be achieved by projecting the spacing be-

tween beams onto the blur direction, yieldingu = ∆t
��®u · ωl−1

��
. Since

only one kernel overlaps the camera ray, the summation disappears

f (t∗l−1)f (t
∗
l )∆t

{
f l,kω

∆t
��®u · ωl−1

�� J l,k
B-B1D

}
f (s∗k ). (20)

The constant ∆t can be moved into the braces and cancels. Addition-

ally, the term ∥ωl ×ω ′
k ∥ occurs both in J l,k

B-B1D
and the denominator

of ®u, and can be cancelled. Taking the limit and simplifying yields

⟨D⟩l−1,k
Q-B0D

= f (t∗l−1)f (t
∗
l )


f l,kω

J l−1,l,k
Q-B0D

 f (s∗k ), (21)

where J l−1,l,k
Q-B0D

=

���ωl−1 · (ωl × ω ′
k )
��� is the Jacobian for 2D×1D cou-

pling with 0D blur, yielding a continuous photon plane.

Photon volume–sensor beam (3D×1D, 0D blur): We insert and ex-

pand the Q-B1D estimator (17) into Eq. (8) to obtain ⟨D⟩l−2,k
Q-B1D

:

f (tl−2)
p(tl−2)

∫ sk+

sk−
f (t̃l−1)f (t̃l )


K1(xl , ỹk )
J l−1,l
Q-B1D

f l,kω

 f (s) ds . (22)

We replace distance sam-

pling along tl−2 with de-

terministic “plane marching”

(left) and select a uniform

blurring kernel K1(xl , yk ) =
u−1 with blur direction ®u =
(ωl−1 ×ωl )/∥ωl−1 ×ωl ∥ nor-
mal to the plane.

The contribution from all planes is∑
i=0

f (t (i)l−2)∆t
∫ s (i )k+

s (i )k−
f (t̃l−1)f (t̃l )


u−1

J l−1,l
Q-B1D

f l,kω

 f (s) ds . (23)
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To ensure that adjacent planes touch exactly, we project the plane

spacing onto the blur direction to obtain u = ∆t
��ωl−2 · ®u��. Substitut-

ing into Eq. (23) and rearranging yields∑
i=0

∫ s (i+1)k−

s (i )k−
f (t (i)l−2)f (t̃l−1)f (t̃l )∆t


��ωl−2 · ®u��−1
∆t J l−1,l

Q-B1D

f l,kω

 f (s) ds .

The term ∥ωl−1 × ωl ∥ occurs both in the denominator of ®u and

the Jacobian J l−1,l
Q-B1D

, and can be cancelled. Taking the limit and

simplifying yields a continuous photon volume with contribution

⟨D⟩l−2,k
C-B0D

=

∫ sk+

sk−
f (t̃l−2)f (t̃l−1)f (t̃l )

{
f l,kω

J l−2,l−1,l
C-B0D

}
f (s) ds, (24)

where J l−2,l−1,l
C-B0D

= |ωl−2 · (ωl−1 × ωl )| is the Jacobian for 3D×1D
coupling.

Summary. Our theory generalizes previous work by demonstrat-

ing how arbitrary numbers of distance sampling steps along photon

paths can be replaced by expected value estimators, which ultimately

results in higher-dimensional photon samples. While we explicitly

derived new density estimators in 2D (photon planes, blurred and

unblurred) as well as 3D (photon volumes), we can apply this process

repeatedly to obtain estimators of arbitrary dimension.

While our derivations focused on photons, the exact same ap-

proach can also be applied to camera paths, leading to novel sensor

planes, sensor volumes and beyond. Additionally, these sensor prim-

itives can be combined freely with photon planes, photon volumes

and so forth. The expressions for the resulting density estimators

only depend on the combined dimensionality of the photon, sensor

sample, and blur kernel. It is worth noting that this combined di-

mensionality has to be at least 3 for density estimation to succeed.

This explains why unbiased photon planes are possible, whereas

e.g. Beam–Beam estimates require at least a 1D blur.

Finally, our theory is not restricted to expected value estimators,

and any estimator in our derivations can be replaced by a corre-

sponding track-length estimator. For planes alone, this quadruples

the number of estimators (long–long, short–long, long–short, short–

short), depending on which segments use track-length estimation.

5 THEORETICAL ERROR ANALYSIS
Since our theory predicts a growing number of possible estimators,

we perform an error analysis to better understand their behavior

compared to prior approaches. Our analysis is inspired by the one of

Křivánek et al. [2014], who examined variance in a single-scattering

scenario with a point or beam estimator along a camera ray and light

ray. Since our theory allows unfolding the distance propagation term

for additional segments, we generalize their analysis by considering

a 2-scattering scenario involving three path segments and include

bias in our analysis, leading to new insights.

5.1 Analysis Setup
We consider a canonical configuration for 2-scattering as depicted

in Fig. 4. Since our theory only changes how the propagation dis-

tances are evaluated, we leave the directions of the light and camera

subpaths fixed, with the two directions of the photon path ω1,ω2

aligned with the x- and y-axes, and the camera ray direction ω ′
1

set to the z-axis. The site of density estimation corresponds to the

intersection of the camera ray with the xy-plane. To simplify nota-

tion, we denote the distances to this point along each of the path

segments as x , y, and z. Since the shape of the kernel is an arbitrary

choice, we use a d-dimensional cube kernel of side-width u as the

resulting separability will simplify our analysis. This kernel will be

the product of 1D kernels along the three path segments, producing

a 1D step, 2D square, or 3D cube kernel.

An abstract double-scattering estimator in this setup becomes

⟨D⟩x,y,z
*

∼ ⟨A(x)⟩⟨A(y)⟩⟨A(z)⟩u−d (25)

where u is the kernel width and d the kernel dimension. We omit

the directional scattering terms as they are fixed and influence

the estimators by a shared constant factor. The three estimators

⟨A(x)⟩, ⟨A(y)⟩, ⟨A(z)⟩ determine the way transmittance is computed

on the three segments, for which we consider three approaches:

⟨A(t)⟩ =


⟨T̂r(t)⟩C collision estimator,

⟨Tr(t)⟩T track-length estimator,

⟨Tr(t)⟩E expected value estimator.

(26)

expected value

expected value

expected value

track-length

collision
CTE TE2C2E

T2E CE2 TE2

E3

track-length

collision

expected value

collision

collision

track-length

track-length

track-length

expected value

Fig. 4. Our canonical error analysis setup (top left) considers a double-
scattering scenario where the two light path segments and the camera
segment are mutually orthogonal. We analyze the error for different choices
of collision (C), track-length (T), or expected value (E) estimators for trans-
mittance along these three directions. The images visualize results from a
simulation using 100 photons for a grid of camera rays spanning the xy-
plane. The seven images here correspond to the estimators that always use
(E) along the camera ray. The images are inverted to aid in visual comparison.
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Here ⟨Tr(t)⟩ denotes a transmittance estimator, and ⟨T̂r(t)⟩ an esti-

mator of transmittance integrated over a kernel centered at t :

T̂r(t) ≡
∫ t+u

t−u
Tr(t ′) dt ′ =

e
−σt (t−u)− e

−σt (t+u)

σt
. (27)

5.2 Relation to Volumetric Density Estimators
The different combinations of these three estimators along the three

segments yields 3
3 = 27 possible definitions of ⟨D⟩x,y,z

*
. This allows

us to examine, for our canonical configuration, the beam and/or

point estimators developed by prior work, and also the estimators

we derived in Sec. 4. All estimators from prior work simulate 2-

scattering by restricting at least one of the axes, typically x , to a

collision estimator, but allowing the other dimensions, y and z, to be
any of the three estimators in Eq. (26). For instance, using a collision

estimator along all three axes corresponds to traditional volumetric

photon mapping with a 3D kernel; using a collision estimator along

x , and track-length or expected value estimators alongy and z result
in the variety of short and long beam estimators from prior work.

Our theory allows replacing the collision estimator along x with

one of the other two estimators. For instance, using track-length

estimators along x and y, and an expected value estimator along z
results in the “short–short” variant of estimator (Eq. (21)).

In Fig. 4 we visualize the results of a photon simulation in this

canonical setup using several of these possibilities (all combinations

are provided in the supplemental). The simulation generates 100

photon paths, and evaluates the estimators for a 2D grid of camera

rays parallel to the z axis.

5.3 Error Derivation
Given this generic setup, we wish to determine the relative root-

mean-squared error (rRMSE) of Eq. (25):

rRMSE[⟨D⟩x,y,z
*

] =
√
V[⟨D⟩x,y,z

*
] + B2[⟨D⟩x,y,z

*
]/DE , (28)

where E, V, and B2 are the mean, variance and squared bias of the

estimator, and DE = Tr(x)Tr(y)Tr(z) is the unbiased reference value

corresponding to using an expected value estimator along each axis.

Under our orthogonality assumption, the estimators along x , y,
and z are statistically independent, so the expected value and vari-

ance of ⟨D⟩x,y,z
*

can be calculated from the first and second mo-

ments of ⟨A(t)⟩ using the standard relations:

E[⟨D⟩x,y,z
*

] = u−d E[⟨A(x)⟩]E[⟨A(y)⟩]E[⟨A(z)⟩] (29)

V[⟨D⟩x,y,z
*

] = u−2d
(
E[⟨A(x)⟩2]E[⟨A(y)⟩2]E[⟨A(z)⟩2]− (30)

E[⟨A(x)⟩]2E[⟨A(y)⟩]2E[⟨A(z)⟩]2
)
,

with squared bias:

B2[⟨D⟩x,y,z
*

] =
(
E[⟨D⟩x,y,z

*
] − DE

)
2

. (31)

The first and second moments for each choice of ⟨A(t)⟩ (collision,
track-length, or expected value) were previously derived byKřivánek
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Fig. 5. LogLog visualization of relative root-mean-squared error (rRMSE) as
a function of the kernel width u for the nine possible ways of choosing a
collision (C), track-length (T), or expected value (E) estimator for 3-scattering.
The graph labels denote the number of dimensions each type of estimator
is used for. The E3 estimator does not appear because its rRMSE is zero.
Approaches with the same number of collision estimators use the same
colors, and approaches with the same number of expected value estimators
use the same line style (solid, dashed, dotted).

et al. [2014], which we restate here for completeness:

E[⟨T̂r(t)⟩C ] = T̂r(t), E[⟨T̂r(t)⟩2C ] = T̂r(t)/σt , (32)

E[⟨Tr(t)⟩T ] = Tr(t), E[⟨Tr(t)⟩2T ] = Tr(t), (33)

E[⟨Tr(t)⟩E ] = Tr(t), E[⟨Tr(t)⟩2E ] = Tr(t)
2. (34)

5.4 Error Comparison and Discussion
We can now analyze the estimators’ errors by plugging the first

and second moments (Eq. (32–34)) into the definitions of mean,

variance and squared bias (Eq. (29–31)), and finally into Eq. (28) for

relative error. To reduce the number of possible estimators down

from the available 27, we set the distances along each of the axes

to be equal: x =y = z = 10mfp, where mfp ≡ 1/σt is a mean free

path. This leaves ten remaining unique possibilities, differing only

by the number of times each type of estimator is used, and not their

relative order. We denote these possibilities with the shorthand “C”
for collision estimators, “T ” for track-length, and “E” for expected
value, and will express repetition of an estimator as an exponent. For

instance, “C2T ” means two collision estimators and one track-length

estimator. Fig. 5 compares the relative error of these ten estimators

as we change the width u of the blur kernel.

Impact of bias. The intersection of the curves at u=1 is due to the
fact that collision estimators have lower variance than track-length

estimators for blur widths that are greater than 1mfp [Křivánek et al.

2014]. By examining error instead of just variance, however, we see

that as the kernel width for collision estimation continues to grow,

the introduced bias dominates, and the error rapidly increases once

again. This shows that collision estimators are not always better for

large blur widths, but only if the blur width is within a sweet-spot

range highlighted in Fig. 5 (approximately 1–9mfps in our setup).

Impact of expected value estimators. Since the expected value es-

timator contributes no variance, employing it will always reduce
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variance compared to using the other estimators. This leads to three

distinct groups of intersecting curves at u=1, which are determined

by the number of times the expected value estimator is employed

(decreasing/increasing our choice of x =y =z would furthermore

bring these groups closer/further apart, respectively). The graphs

also show that the expected value and track-length estimators al-

ways lead to a constant, finite variance, irrespective of the blur

width, since they perform no blurring.

Impact of collision estimators for small widths. Unfortunately, the
presence of just one collision estimator will lead to infinite variance

as u→0. More interestingly, the rate at which the estimators shoot

off to infinite variance differs based on the number of collision es-

timators used: the estimators with the same number of collision

estimations (depicted in the same colors) share similar slopes. From

a practical perspective this means that each additional replacement

of a collision estimator with a track-length or expected value esti-

mator will make variance asymptotically lower as the blur width

diminishes. Current approaches use collision estimation for all but
the two connecting segments, providing considerable opportunity for

improvement especially for longer paths and small blur kernels.

5.5 Applicability to other Estimators
We only included estimators with the minimum required blur to

make the number of possibilities manageable, but it would be trivial

to also account for higher dimensions of blur by including track-

length ⟨T̂r⟩T and expected value estimators ⟨T̂r⟩E of integrated trans-

mittance in Eq. (26). We tried this for some common estimators, but

since the total number of possible estimators for 2-scattering would

grow to 3
5 = 243 (or 56 if x =y=z), we have omitted these choices

since we did not find them to provide further insights.

Since Eq. (25) is agnostic to which segments are on the camera

vs. light subpath, the results from our analysis also apply to other

choices of camera and light subpath lengths, as long as the total

number of segments remains 3. For instance, the analysis is valid also

for photon beam×sensor plane, or photon point×sensor volume.

While our analysis only considers up to double scattering, we

anticipate that the insights gained here apply similarly to higher

scattering orders. However, since it is not possible to create more

than three mutually orthogonal directions in 3D, a formal variance

analysis for 3+ scattering would need to account for the statistical

dependence of the estimators along the additional path segments.

5.6 Singularities
All of our estimators contain an inverse Jacobian in their contribu-

tion, but our canonical setup side-steps their influence by choosing

orthogonal scattering directions. In practice, however, the relative

directions of successive path segments could cause these inverse

Jacobians to become singular. To understand the potential impact on

variance, we note that the Jacobian for blurred photon planes is in

fact identical to the Jacobian of the Beam×Beam (1D blur) estimator,

so potential singularities should be of the same order. Further analy-

sis is required to quantify the variance behavior of unblurred photon

planes and photon volumes, which share a similar Jacobian. One

important advantage of our estimators over prior work is that the Ja-

cobians for blurred photon planes and photon volumes involve only

the photon directions (and not directions on both the camera and

light subpaths), and could conceivably be cancelled using specially

crafted importance sampling techniques [Georgiev et al. 2013].

6 IMPLEMENTATION
We validate our theoretical error analysis with implementations

of several of the estimators predicted by our theory. Implement-

ing all combinations of collision, track-length and expected value

estimators across multiple photon path segments would be prohib-

itively time consuming, and instead we focus on a subset of 2D

and 3D photon samples. Our most general implementation adds

photon planes with track-length estimation to an open source ray

tracing renderer. We select short–short planes due to their finite

extent, which makes them more amenable to efficient acceleration

compared to their long counterparts. We also demonstrate a hybrid

CPU-GPU implementation, which traces photon paths on the CPU

and rasterizes the resulting photons using the GPU.

6.1 General Ray Tracing Renderer
Our most general implementation proceeds similar to a traditional

two-stage photon mapping algorithm. In the photon shooting stage,

we deposit photon points on surfaces and both beams and planes

inside the medium. For every segment of the photon path that lies

inside the medium, we insert a photon plane by sampling an addi-

tional scattering direction and propagation distance. If the segment

originated on a surface, we additionally insert a photon beam.

Special care needs to be taken at the intersection of photon paths

with solid objects. To ensure energy conservation, the length of

the segments used for a short plane must always be the sampled

propagation distance, not the distance to the nearest surface. Planes

can therefore potentially extend beyond the surfaces they intersect.

Visibility tests will prevent light leaks across surface boundaries.

Acceleration structure. Due to the size and distribution of the

photon planes, ray-plane intersection tests can be challenging to

accelerate using traditional bounding volume hierarchies. We in-

stead use a uniform grid to store both planes and beams in our

implementation. We additionally use a specialized frustum-aligned

grid for intersection tests with primary rays, which allows for effi-

cient culling. We provide detailed performance comparison of these

optimizations applied to beams and planes in Table 1 with respect

to a baseline BVH implementation. In order to provide a fair com-

parison, we use the same optimized data structures for both beams

and planes in our implementation.

Visibility caching. In contrast to photon beams, photon planes

require a visibility test along the last segment of the photon path

for each evaluation. The performance impact of these visibility tests

can be significant, and we employ a caching strategy to accelerate

rendering with blurred photon planes. Conceptually, we blur the

visibility term along the first segment of the plane by reusing vis-

ibility tests for samples in close proximity. For a first intersection

point y(1) (see inset figure), we look up into the visibility cache

consisting of regularly spaced bins of widthu (the blur extent) along

segment ωl−1. A cache miss results in a ray being traced along ωl
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Table 1. Absolute render times and speedup (in parantheses) of our performance optimizations applied to photon beams and planes across all seven of our test
scenes, with respect to a baseline BVH implementation. Optimizations are enabled incrementally from left to right. Please see Sec. 6 for details.

Scene Baseline BVH Uniform Grid Frustum Grid Vis. Cache

B-B1D Q-B0D Q-B1D B-B1D Q-B0D Q-B1D B-B1D Q-B0D Q-B1D Q-B1D

Bathroom 763s 3284s 5201s 750s (1.02×) 1440s (2.28×) 3249s (1.60×) 154s (4.96×) 1394s (2.36×) 2679s (1.94×) 515s (10.10×)
Bedroom 905s 3012s 4671s 973s (0.93×) 1403s (2.15×) 2797s (1.67×) 180s (5.03×) 1287s (2.34×) 2312s (2.02×) 807s (5.79×)
Kitchen 759s 2319s 3145s 814s (0.93×) 1095s (2.12×) 1896s (1.66×) 165s (4.61×) 1059s (2.19×) 1635s (1.92×) 566s (5.56×)
Living Room 614s 2065s 3076s 599s (1.03×) 876s (2.36×) 1840s (1.67×) 144s (4.25×) 826s (2.50×) 1402s (2.19×) 517s (5.94×)
Red Room 524s 2498s 3692s 356s (1.47×) 1022s (2.44×) 2080s (1.77×) 98s (5.32×) 1035s (2.41×) 1698s (2.17×) 645s (5.73×)
Doorway 545s 2334s 3190s 549s (0.99×) 1479s (1.58×) 2351s (1.36×) 194s (2.81×) 1433s (1.63×) 1803s (1.77×) 446s (7.15×)
Staircase 491s 2186s 2917s 568s (0.86×) 1019s (2.15×) 1819s (1.60×) 134s (3.67×) 1902s (1.15×) 1631s (1.79×) 506s (5.76×)

occluder

toward y(1), and the bin corresponding

to t
(1)
l−1 is populated with the distance

to the nearest occluder. For a next in-

tersection y(2) with similar offset t
(2)
l−1

along ωl−1, the stored hit distance is

reused to check for occlusion of y(2),
which avoids one ray tracing operation.

Conversely, the cache lookup of an in-

tersection y(3) with too dissimilar hit

distance t
(3)
l−1 will fail, and a new ray

is traced to populate the corresponding

bin. To achieve a bounded memory foot-

print and avoid large up-front cost of

the cache, we implement it as a per-thread hash map keyed by the

index of the bin and the photon index. Performance savings depend

on the blur extent of the plane, but are significant even on our test

scenes with near imperceptible blur. We observe that the small addi-

tional blur of the visibility introduced by the caching is insignificant,

but we cannot use this caching strategy for unblurred planes if we

wish for them to remain unbiased. For this reason, we only enable

visibility caching for blurred photon planes. We provide concrete

performance numbers of this optimization in Table 1 (right column).

Control variates. Computing the contribution of a blurred photon

plane involves the evaluation of an integral along the segment of

overlap on the camera ray. Due to the presence of binary visibility

in the integrand, this integral generally cannot be evaluated an-

alytically, even in homogeneous media. Although the integral is

straightforward to estimate with MC sampling, this process may

introduce additional variance for long camera segments. In practice,

we notice that only a small percentage of visibility tests end up

occluded, which motivates us to use a control variate [Glasserman

2003] as a variance reduction technique. We provide full technical

details of our approach in the supplemental material. Although this

procedure adds to the rendering cost (10%-15% in our scenes), for

planes with large blur radii it can reduce variance significantly com-

pared to naïve MC sampling. Its usefulness is reduced in our test

scenes with small blur radii, but we still incorporate it to remain

robust for all plane configurations.

Although our implementation uses a number of performance

optimizations, we stress that these do not diminish the theoretical

improvements of our estimators. Optimizing ray-photon intersec-

tions is not specific to our method, and indeed, uniform grids have

been employed in previous work [Křivánek et al. 2014] to accelerate

rendering with photon beams. Additionally, we use the same data

structures for both beams and planes to provide a fair compari-

son; in fact, photon beams benefit significantly more from these

optimizations than photon planes (Table 1).

Despite these optimization techniques, our implementation does

not require parameter fine-tuning to achieve reliable performance.

The only user-exposed parameter is the grid resolution, which does

not noticeably affect performance over a reasonable range of values.

6.2 Hybrid CPU-GPU Renderer
To generate the results in Fig. 2, we also implemented our approach

using a hybrid CPU-GPU renderer specialized to the searchlight
problem. Our implementation traces photon paths originating from a

collimated beam through a semi-infinite homogeneous medium and

rasterizes the resulting photon samples using the GPU. While this

implementation only handles occlusion with the medium boundary,

it demonstrates the relative performance of photon samples with

up to 3 dimensions.

7 RESULTS
We demonstrate our implementation on seven indoor scenes con-

taining scattering media, and compare the effectiveness of two of

our estimators (Q-B1D and Q-B0D) against photon beams. All ren-

der times were measured on a Linux cluster with 8 core 2.7GHz

E5-2680 CPUs and 64GB RAM, using 16 threads.

We use our uniform and frustum-aligned grids to accelerate both

beams and planes, with the grid resolution adjusted for best perfor-

mance in each scene. In all scenes, the grid resolution is relatively

low (less than 50 cells on the largest dimension). Additionally, we

make use of visibility caching and control variates for 1D blurred

planes. We use the same blur radius for beams and blurred planes,

which is set to cover roughly two pixels at the scene’s focal point.

Since photon planes are more costly to evaluate than photon beams,

we perform an equal-time comparison to include both the quality

of the estimators and their cost in the comparison metric. Each

estimator is run for 10 minutes on each scene.

Additionally, we compute the variance of each estimator as an

objective comparison metric. We run 100 instances of each estimator

with a different random seed, and compute the variance between all
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Table 2. Variance and effective speedup (in parantheses) of two of our
estimators (Q-B0D and Q-B1D) and photon beams (B-B1D) on all seven of
our test scenes. Please see Sec. 7 for details.

Scene B-B1D Q-B0D Q-B1D

Bathroom 1.127 (1.00×) 0.462 (2.44×) 0.106 (10.68×)
Bedroom 0.901 (1.00×) 0.156 (5.79×) 0.071 (12.66×)
Kitchen 0.777 (1.00×) 0.163 (4.77×) 0.088 (8.84×)
Living Room 0.182 (1.00×) 0.032 (5.65×) 0.011 (16.41×)
Red Room 0.144 (1.00×) 0.010 (14.77×) 0.004 (40.03×)
Doorway 0.171 (1.00×) 0.060 (2.85×) 0.008 (20.70×)
Staircase 0.276 (1.00×) 0.073 (3.77×) 0.020 (14.14×)

100 renderings after five minutes of render time. For unblurred pho-

ton planes, the variance is simultaneously the error of the estimator,

whereas photon beams and blurred photon planes contain an addi-

tional bias term that we do not compute. Since photon planes require

a minimum of two or more scattering events in the medium, we ex-

clude surface- and low-order medium scattering in our comparison

and visualize only light paths with 2+ bounces in the medium. We

stress that this is only for comparison reasons – our implementation

can compute the full light transport in the scene.

We show renderings of four of our test scenes (Bathroom, Door-

way, Kitchen, Living Room) at equal render time in Fig. 6, and

full-resolution comparisons for all seven scenes in the supplemental

material. The leftmost column shows the full light transport in the

scene, whereas the images on the right demonstrate estimates of

medium scattering obtained from each technique. For better com-

parison, we slightly boost the exposure of the medium-only images.

We additionally show metrics across all seven of our test scenes in

Table 2, both in terms of absolute variance and speedup (computed

as the inverse of relative variance). The variance numbers were

multiplied by a factor of 10
3
for formatting reasons.

In all scenes, both of our plane estimators provide a substantial im-

provement in image quality at equal render time. Additionally, both

of our plane estimators provide a significant decrease in variance,

corresponding to a decrease in render time of 2.4×–40× compared

to photon beams at equal quality.

Despite the fact that unblurred photon planes are unbiased, they

provide less of an improvement than blurred photon planes in all

of our scenes. We believe this to be for two reasons: Since we only

measure variance, not error, the absence of bias in unblurred photon

planes is not captured by our metrics. Additionally, we make use

of visibility caching for blurred photon planes, which leads to a

decrease in the number of visibility tests by a factor of 3 on average,

significantly improving render times. The same technique cannot

be applied to unblurred photon planes without introducing bias.

The scenes in Fig. 6 demonstrate media with isotropic scattering.

We provide additional results for media with anisotropic scattering

in our supplemental material.

8 LIMITATIONS, DISCUSSION & FUTURE WORK
Heterogeneity. Although neither of our implementations currently

support heterogeneous media, we stress that this is not a fundamen-

tal limitation of our theory. Evaluating expected value estimators is

straightforward (but more costly) even in the presence of hetero-

geneity, and our 2+D estimators can be easily used to estimate light

transport in such media. However, when track-length estimation is

used on more than one path segment, the probability of construct-

ing the path no longer cancels with the transmittance, and special

care would need to be taken when using the short variants of our

estimators. Since our implementations use track-length estimation

exclusively, additional work is needed to support heterogeneity.

Visibility. Evaluating the contribution of an nD photon requires

n − 1 visibility tests, which could potentially be costly in practice.

We use a visibility cache in our implementation to significantly

reduce the number of visibility tests, but unfortunately this approach

introduces additional bias and cannot be applied to unbiased photon

samples. We believe an approach similar to unbiased deep shadow

maps [Jarosz et al. 2011b] could lead to unbiased visibility caching,

with performance implications for unbiased nD photon samples.

Path construction with nD samples. Previous work on combining

points and beams with path tracing [Křivánek et al. 2014] could

be extended to include the family of estimators introduced in this

paper. Since the majority of our higher-dimensional estimators are

unbiased, they operate natively in the same path space as regular

path tracing, and their combination with other techniques is math-

ematically simpler than it is with points and beams. Additionally,

our unblurred nD samples are not limited to the field of density

estimation. The absence of bias in these estimators makes them

suitable as standalone path construction techniques, and could be

used to extend previous work on joint sampling of length–3 connec-

tion paths [Georgiev et al. 2013] to arbitrary lengths. Conceivably,

these path construction techniques could even be used as mutation

strategies in the context of Metropolis Light Transport [Pauly et al.

2000; Veach and Guibas 1997].

Surface rendering. Our estimators have potential applications

even beyond density estimation within the medium. While the in-

tersection of photon beams with surfaces results in photon points,

surface intersections of photon planes induce line samples on sur-

faces, and photon volumes result in photon polygons. In general, nD
photons induce (n − 1)D samples when intersected with a surface,

and including such higher-dimensional surface photons could lead

to significant improvements in media-to-surface transport.

Extensions beyond distance sampling. While our derivations focus

on replacing distance samples with other estimators, the same idea

can be applied to directional and even emission sampling on the pho-

ton and camera subpath. Analogous to “photon marching”, a whole

new family of estimators can be obtained by “photon spinning”,

in which angular dimensions of directional sampling are collapsed

into a higher dimensional photon. Dimensions of emission sampling

can be collapsed to obtain line [Billen and Dutré 2016] and polygo-

nal samples on the light source, and combining such samples with

track-length or expected value estimation results in photon planes

and photon volumes that can be used even for single scattering, as

opposed to their current restriction to 2+ or 3+ scattering. Applying

the same idea to the camera path results in line or polygonal samples

on the aperture [Tzeng et al. 2012] or across time [Gribel et al. 2011,

2010], with implications for depth of field or motion blur.
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Fig. 6. We show renderings of four volumetric scenes produced by three different estimators at equal render time. We show the full light transport (left
image) and multiply scattered volumetric transport (right images; exposure manually increased). Our estimators (photon planes, 0D and 1D blur) provide
significant variance reduction and improved image quality compared to photon beams in all scenes. Please refer to the supplemental material for full-resolution
comparisons across all seven of our test scenes.
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9 CONCLUSION
We presented a new theory of density estimation that generalizes

prior work on point and beam samples to arbitrary dimensions. The

key idea was to replace an increasing number of distance sampling

steps on the photon subpath with track-length or expected value

estimators. Our theory predicts an unbounded number of new esti-

mators, both on the photon- and camera subpath. Through careful

error analysis, we reveal that in cases where photon beams provide

error reduction over photon points, higher-dimensional photons

compound this reduction even further. We extend prior variance

analysis of these estimators to include their bias, and reveal that

collision estimators only outperform track-length estimators in a

narrow region of blur radii. We demonstrate practical implementa-

tions of some of the estimators predicted by our theory, and show

that they provide significant variance reduction and image quality

improvement across a variety of scenes, both at equal sample count

and equal render cost.
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