
INFORMED CHOICES IN PRIMARY

SAMPLE SPACE

Benedikt Bitterli

Master Thesis

August 2015

Advised by

Wenzel Jakob, Wojciech Jarosz, Jan Novak

Overseen by Markus Gross

Abstract

In this thesis, we investigate mappings from primary sample space to path space and
their inverses. We give special consideration to how these mappings interact with
Markov Chain Monte Carlo rendering methods operating in primary sample space. In
particular, we show that such methods perform uncontrolled changes to light trans-
port paths in the presence of geometric and material discontinuities, discrete choices
and multiple sampling techniques. We also show that ignoring internals of these map-
pings can lead to poor noise distribution on the image plane and low acceptance rates
for large steps. Our contributions are three-fold: We describe how to construct inverses
of several path sampling techniques employed in graphics in order to robustly turn
transport paths back into the random numbers that produced them, and use these in-
verses to create two new perturbations for Multiplexed Metropolis Light Transport; we
introduce Multiple Correlated-Try Metropolis to Markov Chain Monte Carlo render-
ing and apply it to create a new large step mutation based on bidirectional connections;
and we show how annotating dimensions of primary sample space with information
about how they are employed in the path sampling process can make Markov Chain
Monte Carlo rendering methods more robust, and give two applications of such an
approach.

i

Zusammenfassung

In dieser Arbeit untersuchen wir Funktionen vom Raum der Zufallszahlen zum Raum
der Lichtpfade, sowohl deren Inversen. Insbesondere untersuchen wir wie diese Funk-
tionen mit Hinsicht auf Renderingverfahren basierend auf Markov-Ketten Monte Carlo.
Wir zeigen, dass solche Verfahren unkontrollierte Veränderungen am Lichtpfad ausführen,
wenn diskrete Entscheidungen, Geometrie- oder Materialdiskontinuitäten oder mehrere
Samplingtechniken involviert sind. Wir zeigen auch, dass das Ignorieren der Funktion-
sweise dieser Funktionen zu einer unschönen Verteilung des Rauschens im Bild und
zu geringen Akzeptanzwahrscheinlichkeiten von Large Steps führen kann. Wir fassen
die Beiträge dieser Arbeit wie folgt zusammen: Wir beschreiben, wie man Inversen
diverser Samplingmethoden für Lichtpfade konstruieren kann, um Lichtpfade zurück
in Zufallszahlen zu transformieren, und beschreiben zwei neue perturbations für Mul-
tiplexed Metropolis Light Transport basierend auf diesen Inversen; wir beschreiben
Multiple Correlated-Try Metropolis in Hinsicht auf Markov-Ketten Monte Carlo und
benutzen es, um einen neuen Large Step basierend auf zweiseitigen Verbindungen zu
konstruieren; und wir zeigen, wie zusätzliche Information über die Funktionsweise
der Samplingmethoden und ihrer Verwendung der Dimensionen des Raums der Zu-
fallszahlen benutzt werden kann, um Markov-Ketten Monte Carlo Methoden mehr
robust zu machen, und beschreiben zwei Anwendungen dessen.

iii

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my advisors for
their continuous support, supervision and advice during this thesis; Wojciech Jarsoz,
who continued to devote his time even in the middle of his move across continents and
time zones; Jan Novak, who did not even let a vacation get in the way of reviewing my
work; and Wenzel Jakob, who agreed to join this project more than halfway through,
and without whom this thesis would have gone entirely differently.

My sincere thanks also go to Aaron Griffith for answering my misguided math ques-
tions, and Andrew Chin for his support in setting up last-minute render jobs.

My deepest appreciation also goes to ETH for supporting me with their generous Mas-
ter Scholarship Award, as well as all of the people who made that possible.

Finally, none of this would have been possible without the unwavering love and pa-
tience of my family, friends and loved ones, and my heart-felt gratitude goes out to
them.

v

Contents

List of Figures ix

1 Introduction 1

1.1 Thesis Overview . 2

2 Fundamentals of Light Transport 3

2.1 The BSDF . 4

2.2 The Rendering Equation . 5

2.2.1 Surface Area Formulation . 6

2.3 The Measurement Equation . 8

2.3.1 Path Integral Formulation . 8

3 Solving the Light Transport Problem 11

3.1 Monte Carlo Methods . 11

3.1.1 Variance of the Monte Carlo Estimator 12

3.2 Random Walks . 14

3.3 Path Tracing . 17

3.3.1 Next Event Estimation . 17

3.3.2 Multiple Importance Sampling . 19

3.4 Bidirectional Path Tracing . 20

3.5 Markov Chain Monte Carlo Methods . 23

3.6 Metropolis Light Transport . 26

3.7 Primary Sample Space Metropolis Light Transport 26

3.7.1 Rippling Effects . 29

3.8 Multiplexed Metropolis Light Transport 30

4 Annotated Primary Sample Space 33

4.1 Resolution-Aware Proposals . 33

4.2 Constrained Discrete Choices . 36

4.3 An Alternative Large Step Mutation . 37

4.3.1 Analysis . 42

vii

Contents

5 Inverse Path Mappings 45

5.1 Inverse Random Walks . 45
5.1.1 The Inversion Method . 46
5.1.2 Discrete Sampling . 47
5.1.3 Discussion . 49
5.1.4 The Inverse Path Sample Function 50

5.2 Robust Transitions between Sampling Techniques 51
5.2.1 A Path-Invariant Technique Perturbation 53
5.2.2 Implementation Details . 55

5.3 Controlled Small Steps . 57
5.3.1 Discontinuities in Primary Sample Space 57
5.3.2 Crossing Discontinuities with Path Inversions 58
5.3.3 An Alternative Small Step Perturbation 60

6 Results 67

7 Conclusion 77

7.1 Future Work . 78

Bibliography 79

viii

List of Figures

2.1 Renderings and illustrations of four different BSDFs 4
2.2 Comparison of directional and three-point form of the BSDF 7

3.1 Illustration of four different events on a random walk 14
3.2 Illustration of different path sampling strategies 18
3.3 Rendered comparison of path tracing, next event estimation and MIS . . 19
3.4 Comparison of path tracing and bidirectional path tracing 20
3.5 The sampling techniques comprising Figure 3.4 (b) 22
3.6 Illustration of Primary Sample Space MLT 27

4.1 Comparison of PSSMLT and resolution-aware proposals 34
4.2 PSSMLT and resolution-aware proposals at different resolutions 35
4.3 Comparison of BDPT, PSSMLT and constrained-discrete choices 37
4.4 Illustration of Multiple-Try Metropolis . 39
4.5 Average acceptance probability of MMLT large steps and MCTLS 43
4.6 Interior scene rendered with MMLT large steps and MCTLS 44

5.1 Illustration of TECHNIQUEPERTURBATION for MMLT 52
5.2 Illustration of the path-invariant technique perturbation 53
5.3 Illustration of geometric and material discontinuities 57
5.4 Illustration of robust small steps . 60
5.5 Average angle change in MMLT and our small steps 64
5.6 Jewelry scene, rendered with MMLT and our small steps 65

6.1 Average acceptance probability of MMLT small steps and PITP 69
6.2 Comparisons of PSSMLT, MMLT and PITP in scene LIVINGROOM 70
6.3 Comparisons of PSSMLT, MMLT and PITP in scene STAIRCASE 71
6.4 Comparisons of PSSMLT, MMLT and PITP in scene AJAR 72
6.5 Full resolution images of the insets from Figure 6.2 73
6.6 Full resolution images of the insets from Figure 6.3 74
6.7 Full resolution images of the insets from Figure 6.4 75

ix

CHAPTER1
Introduction

The synthesis of images depicting virtual scenes – so-called renderings – has a long-
standing tradition in the field of computer graphics. The ever-increasing demand for
visual fidelity and realism of these renderings and their pervasive use in the entertain-
ment industry have been the main driving forces behind rendering research in both
industry and academia, and it remains an important research topic to this day.

Physically based rendering, which strives to simulate light and the physical laws (or
approximations thereof) that govern its interaction with matter, is one particular sub-
field of rendering that has seen a rise in popularity over the past decade. Such an
approach to rendering, firmly rooted in physically motivated principles rather than ad
hoc artist-driven models, promises to faithfully reproduce many of the important light-
ing effects we can observe in the real world. However, physically-based techniques
also come with great computational demand, and only the steady increase in compu-
tational resources over the past few decades has made pursuit of this approach feasible
for movie and video game production.

Light transport is one aspect of physically based rendering which studies light and
its interactions with the virtual world. Given a description of a virtual scene and the
materials comprising it, light transport algorithms are capable of simulating light as it
propagates through the scene and arrives at the virtual camera. Research in this field
has spawned a wealth of different algorithms that attempt to solve the light transport
problem. Interestingly, these algorithms do not necessarily differ in the fidelity of the
images they are able to compute – indeed, for a given scene, most of them will produce
the same solution if run long enough – but rather the time they require to produce a
visually acceptable result. This is of special practical relevance, since we only ever have
a finite amount of time available to render an image.

In this thesis, we are concerned with one particular class of light transport algorithms,
referred to as Markov Chain Monte Carlo methods. These algorithms are currently

1

1 Introduction

among the most robust unbiased rendering algorithms available, and have been a pop-
ular research topic in recent years. In methods based on Monte Carlo integration, ran-
dom numbers form a natural part of the process that generates the image. In particular,
Monte Carlo methods utilize deterministic mappings from random numbers to points
in a different space, the path space, to obtain part of the solution. These mappings are
normally thought of in a forward sense only – from random numbers to points in path
space. However, in this thesis we will show how inverses of these mappings can be
constructed, and we will subsequently utilize such inverses in a Markov Chain process
to produce a viable rendering algorithm. We also show how a small amount of addi-
tional information about these mappings can help Markov Chain rendering algorithms
produce more visually pleasing results.

1.1 Thesis Overview

This thesis consists of seven chapters. In Chapter 2 we will review the fundamentals of
light transport and describe the light transport problem. In Chapter 3 we describe prac-
tical solution techniques to the light transport problem and review the related work rel-
evant to this thesis. These two chapters will also introduce the notation used through-
out the remainder of the text. In Chapter 4 we highlight some of the shortcomings
of previous Markov Chain Monte Carlo methods operating on random numbers and
show how they can be fixed by exposing some information about the mapping from
random numbers to path space. In Chapter 5 we show how mappings to path space can
be inverted and show two applications of such an inverse in a Markov Chain Monte
Carlo rendering method. We compare our proposed techniques to previous work in
Chapter 6 and conclude the thesis in Chapter 7.

2

CHAPTER2
Fundamentals of Light Transport

The main purpose of light transport algorithms in computer graphics is to synthesize
realistic images of virtual scenes. Given a full description of the surface geometry of
a scene as well as the physical properties of these surfaces, light transport captures
the behaviour of light as it is emitted, transported, scattered, and measured, when it
ultimately meets with the camera. To produce an image, light transport algorithms
must simulate the physical laws governing the interactions of light with the virtual
world.

Several models of the physics of light exist today, differing in their complexity and
ability to model physical effects. These models include geometric optics, wave optics,
electromagnetic optics and quantum optics, listed in order of increasing completeness.
Most of computer graphics is built within the framework of geometric optics, which
is the simplest of the models mentioned here. Geometric optics makes several simpli-
fying assumptions and considers light to travel in straight lines, which makes efficient
simulation tractable. Certain physical phenomena, such as interference or diffraction,
cannot be captured by such a model. However, for most scenes encountered in prac-
tical rendering, the visual impact of these phenomena is not considered significant
enough to warrant a more expensive computational model.

In geometric optics, the quantity of interest is the radiance. For a given point x and di-
rection ω, the radiance L(x, ω) measures the amount of energy arriving from direction
ω at a small (hypothetical) surface patch dA at x, oriented perpendicularly to ω.

It is often convenient to also define the more intuitive incident radiance and exitant ra-
diance. When we talk about surfaces, the incident radiance Li(x, ω) describes the ra-
diance arriving at the surface point x from direction ω, whereas the exitant radiance
Lo(x, ω) describes the radiance leaving the same surface point towards direction ω.
Intuitively, these two quantities differ only in the sign of ω and we can think of them
in terms of the radiance as Li(x, ω) = L(x, ω) and Lo(x, ω) = L(x,−ω). We refer the

3

2 Fundamentals of Light Transport

Diffuse Smooth Conductor Rough Conductor Rough Dielectric

Figure 2.1: Renderings and illustrations of four different BSDFs. The incident beam of light is

marked in red; reflected and transmitted light is shown in blue and green, respec-

tively.

reader to Veach [Vea98, Section 3.5] for a more rigorous definition.

Of main interest for this thesis is the interaction of light with surfaces, as described in
this section. For a more general overview of light transport on surfaces and participat-
ing media, we refer the reader to Pharr and Humphreys [PH10] and Jarosz [Jar08].

2.1 The BSDF

In order to describe the appearance of surfaces under varying illumination, we re-
quire a model of surface reflectance. Nicodemus et al. [NRH+77] describe a formal
framework to reason about such reflectance functions, and introduce the bidirectional
reflectance distribution function (BRDF) to model reflection from arbitrary surfaces.
A straightforward generalization of their work to transmissive surfaces is the bidirec-
tional scattering distribution function (BSDF), which we will use in this thesis. The BSDF
is a function of surface location x, incident direction ωi and exitant direction ωo, and
describes the fraction of light arriving from direction ωi that is scattered towards di-
rection ωo. Intuitively, if we were to shine a flashlight at x from direction ωi, the BSDF
would tell us how bright the surface at x would appear when viewed from direction
ωo. More precisely,

fS(x, ωo, ωi) =
dLo(x, ωo)

Li(x, ωi)|N(x) ·ωi|dσ(ωi)
. (2.1)

4

2.2 The Rendering Equation

For many surfaces, the BSDF is the dominating feature governing its appearance under
illumination. We illustrate a few example BSDFs in Figure 2.1.

In Equation 2.1, we used a previously undiscussed term, the foreshortening factor,
|N(x) · ωi|. Remember that we defined the radiance L(x, ω) with respect to a hypo-
thetical surface patch oriented perpendicular to ω. However, in Equation 2.1, the ac-
tual surface patch on which x is located is oriented perpendicular to the surface normal
N(x), which may be different from the incident direction ωi. This incurs an additional
term describing the decrease in radiance as the surface is tilted away from the inci-
dent direction. In order to explain the intuition behind this factor, we can picture a
scenario where we shine a flashlight perpendicularly onto a surface, illuminating a cir-
cular area. As we tilt the flashlight away from the perpendicular orientation, the circle
illuminated by the light source is stretched along one direction and illuminates an in-
creasingly larger area. The same amount of energy is emitted from the flash light, but
it is distributed onto a larger surface area, causing a decrease in radiance received by
each illuminated differential surface element. This decrease in radiance is proportional
to the foreshortening factor |N(x) ·ωi|.

2.2 The Rendering Equation

The radiance leaving a surface point can be described as the sum of two terms: The
emitted radiance Le, and the scattered radiance Ls:

Lo(x, ωo) = Le(x, ωo) + Ls(x, ωo) . (2.2)

The emitted radiance describes the self-emission of the surface at x. This term allows
us to model light sources in the scene, including naturally occurring emitters such as
the sun or artificial emitters such as candles or light bulbs.

In turn, the scattered radiance describes the light that is received by x from other sur-
faces and reradiated towards direction ωo:

Ls(x, ωo) =
∫
S2

fS(x, ωo, ωi)Li(x, ωi)|N(x) ·ωi|dσ(ωi) . (2.3)

The integrand consists of three terms of interest: The incident radiance Li(x, ωi) de-
scribes the amount of light that arrives at x from the incident direction ωi; the fore-
shortening term |N(x) · ωi| describes how much of the incident radiance is received
by the surface oriented with normal N(x); and the BSDF fS(x, ωo, ωi) describes how
much of the light received is scattered towards the outgoing direction ωo. The integral

5

2 Fundamentals of Light Transport

over all incident directions then gives the total amount of radiance scattered towards
ωo.

Here, we used the sphere of directions S2 as the integration domain; we will denote dσ

as the solid angle measure on this domain. We can rewrite Equation 2.3 more succinctly
using the projected solid angle measure, dσ⊥(x, ω) = |N(x) ·ω|dσ(ω):

Ls(x, ωo) =
∫
S2

fS(x, ωo, ωi)Li(x, ωi)dσ⊥(x, ωi) . (2.4)

By inserting Equation 2.4 into Equation 2.2, we arrive at the following energy balance
equation:

Lo(x, ωo) = Le(x, ωo) +
∫
S2

fS(x, ωo, ωi)Li(x, ωi)dσ⊥(x, ωi) . (2.5)

This equation is called the rendering equation, originally introduced by Kajiya [Kaj86].
Solving this equation is the light transport problem.

2.2.1 Surface Area Formulation

Equation 2.5 is formulated in terms of an integral over the sphere of directions, which
is referred to as the (hemi)spherical form of the rendering equation. Sometimes it is
more convenient to reformulate it as an integral over surfaces instead.

In the following, we denote the union of all surfaces in the scene asM. We will perform
integration in this domain with respect to the surface area measure dA.

Following Kajiya [Kaj86] and Veach [Vea98], we rewrite the quantities appearing in
the rendering equation in order to eliminate the directions ωo and ωi and define them
purely in terms of positions. We first write the radiance in terms of two surface points
in the scene, x, x′ ∈ M:

L(x→ x′) := L
(

x,
x′ − x
||x′ − x||

)
, (2.6)

where arrows denote the direction of light flow; L(x → x′) reads as “the radiance
leaving x toward x′”. Similarly, using a third surface point x′′ ∈ M we can rewrite the
BSDF as

fS(x→ x′ → x′′) := fS

(
x,

x′′ − x′

||x′′ − x′|| ,
x− x′

||x− x′||

)
. (2.7)

It is worth noting that incident direction ωi is reversed compared to the flow of light.
Figure 2.2 illustrates the two different conventions.

6

2.2 The Rendering Equation

ωi ωo

x

x′

x′′

x

(a) Directional Form (b) Three-point form

Figure 2.2: The directional (a) and three-point form (b) of the BSDF. In the directional form,

the directions always point away from the surface. In the three-point form, the

directions align with the direction of light flow, effectively reversing the incident

direction compared to (a).

Moving from integration with respect to projected solid angle measure to area measure
incurs a Jacobian determinant [Kaj86],

dσ⊥(x, ω) =
|N(x) ·ω||N(x′) ·ω|

||x′ − x||2 dA(x′) . (2.8)

We are now ready to write down the surface area formulation of Equation 2.5:

L(x′ → x′′) = Le(x′ → x′′) +
∫
M

fS(x→ x′ → x′′)L(x→ x′)G(x↔ x′)dA(x) . (2.9)

This is also called the three-point form of the rendering equation. Here, we used the
geometry factor G(x↔ x′),

G(x↔ x′) = V(x↔ x′)
|N(x) ·ω||N(x′) ·ω|

||x′ − x||2 . (2.10)

It contains the familiar terms arising from the change of variables, as well as the visi-
bility function V(x ↔ x′), which is a simple indicator function that returns 1 if x and x′

are mutually visible and 0 otherwise.

7

2 Fundamentals of Light Transport

2.3 The Measurement Equation

At the beginning of this chapter, we motivated light transport with the main purpose
of rendering images. So far, we only described how to model light as it interacts with
the scene. In order to produce images, we also need to be able to describe a virtual
camera and how it interacts with light.

Similar to physical cameras, we can reason about virtual cameras in terms of an aper-
ture that allows light to enter, as well as a sensor that measures the incoming radiance
and turns it into pixel values. We can think of the camera sensor as being divided into
M sensor elements arranged in a regular grid, each element associated with a pixel
j ∈ {1, . . . , M} in the image. Typically, M is large (on the order of 106).

The response of the sensor to light may vary with respect to the position and direction
at which light strikes the sensor. We characterize the sensor response using the impor-
tance, denoted as We(x, ω). Here, the point x lies on the aperture, which is modelled as
a physical surface in the scene.

Typically, the sensor response also differs among the sensor elements, and we denote
the sensor response associated with the j-th pixel as W(j)

e . The relation between the
response of the whole sensor and the response of the individual sensor elements is
defined in terms of the reconstruction filter hj as

W(j)
e (x, ω) = hj(x, ω)We(x, ω) . (2.11)

We can think of each of the pixels in the image being the result of a measurement of the
incident radiance by one of the sensor elements. We denote the value of the j-th pixel
as the measurement Ij, defined as the inner product of the incident radiance and the
sensor response,

Ij =
∫
M

∫
S2

W(j)
e (x, ω)Li(x, ω)dσ⊥(x, ω)dA(x) . (2.12)

This equation is called the measurement equation.

2.3.1 Path Integral Formulation

In both the (hemi)spherical and the surface area form of the rendering equation, the
unknown quantity L appears on both sides. This recursive formulation is intuitive and
some light transport methods can be expressed very naturally within this framework.
We can think of this formulation as the “local” view of the light transport problem.

8

2.3 The Measurement Equation

There also exists an alternative “global” view, originally introduced by Veach [Vea98],
which allows expressing the measurement equation directly as a path integral. Unlike
the local formulation, the path integral provides an explicit expression for the value of
a measurement. Any unbiased rendering method can be expressed within this frame-
work.

A full derivation of the path integral formulation is outside the scope of this thesis. We
will review the most important concepts required for the rest of this thesis below and
refer the reader to Veach [Vea98] and Jakob [Jak13] for full discussion of path space for
surfaces and participating media.

The path integral can be derived by repeatedly expanding the surface area form of
the measurement equation and rearranging the resulting terms into an infinite sum of
integrals, each term integrating over a different number of surface points. This sum
can be expressed in a unified integral,

Ij =
∫
P

f j(x̄)dµ(x̄) . (2.13)

In the path integral formulation, the measurement is directly computed as an integral
over light transport paths x̄. A transport path is a series of vertices

x̄ = x0x1 . . . xk , (2.14)

where each of the vertices is a surface point xi ∈ M, i = 0, . . . , k and k is the path
length.

All transport paths of length k form a space Pk,

Pk =M×M× . . .×M︸ ︷︷ ︸
k+1 times

. (2.15)

The union of these spaces forms path space P , the space of all transport paths of arbi-
trary length:

P =
∞⋃

k=1

Pk . (2.16)

The integrand in Equation 2.13 is referred to as the measurement contribution function
f j(x̄) and is defined as

f j(x0 . . . xk) = Le(x0 → x1)W
(j)
e (xk−1 → xk)

G(x0 ↔ x1)
k−1

∏
i=1

fS(xi−1 → xi → xi+1)G(xi ↔ xi+1) . (2.17)

9

2 Fundamentals of Light Transport

We will also sometimes make use of the path contribution f to the entire sensor, not just
one specific measurement, signaled by dropping the subscript j. It is defined similarly
as the measurement contribution function in Equation 2.17, only replacing W(j)

e with
the importance We.

10

CHAPTER3
Solving the Light Transport Problem

Solutions to the light transport problem have been the subject of major research efforts
over the past 30 years. Both the rendering equation and the measurement equation
do not generally lend themselves to analytic solutions, and various numerical solution
techniques have been proposed, starting with ray tracing [Whi80] and finite element
methods such as radiosity [GTGB84].

In this chapter, we will review a few solution methods to surface light transport that
are relevant to the work presented in this thesis.

3.1 Monte Carlo Methods

Rendering methods based on Monte Carlo integration were first introduced to graph-
ics by Cook et al. [CPC84] in order to render distribution effects such as motion blur,
depth of field and soft shadows. Kajiya [Kaj86] applied the Monte Carlo method to the
rendering equation to render global illumination effects.

Consider the following definite integral of a function f over some domain Ω:

I =
∫

Ω
f (x)dµ(x) . (3.1)

Monte Carlo integration is a method to approximate the value of this integral by re-
placing it with a random variable with a specially crafted expected value. Let X be a
random variable in Ω with probability density function (pdf) of pX(x). The expected
value of a function g of X is

E [g(X)] =
∫

Ω
g(x)pX(x)dµ(x) . (3.2)

11

3 Solving the Light Transport Problem

We now define g in such a way that the expected value of g(X) is the integral we intend
to solve. Let

g(x) =
f (x)

pX(x)
(3.3)

with expected value

E [g(X)] =
∫

Ω

f (x)
pX(x)

pX(x)dµ(x) (3.4)

=
∫

Ω
f (x)dµ(x) (3.5)

= I . (3.6)

Estimating the expected value of a random variable is a well-known problem, and we
can easily obtain an estimator of E [g(X)]: Let X1, . . . , XN be N independent realiza-
tions of X, distributed with density pX. Then an estimate of I can be obtained with

I(N) =
1
N

N

∑
i=1

g(Xi) =
1
N

N

∑
i=1

f (Xi)

pX(Xi)
. (3.7)

As N → ∞, I(N) is guaranteed to converge to the expected value I by the law of large
numbers, as long as pX(x) > 0 whenever f (x) 6= 0.

In the context of rendering, we can apply Monte Carlo integration to obtain an estimate
of the pixel measurement Ij. As long as we have a way of sampling paths x̄ with prob-
ability p(x̄) non-zero wherever f j(x̄) non-zero, we can obtain an arbitrarily accurate
approximation of Ij using the estimator in Equation 3.7.

3.1.1 Variance of the Monte Carlo Estimator

The Monte Carlo estimator given in Equation 3.7 is itself a random variable. Of special
practical interest is the variance of this random variable: The lower the variance, the
more accurate the estimate of the integral will be on average for a fixed number of
samples.

The variance of a random variable is defined as

V [X] = E
[

X2
]
− (E [X])2 . (3.8)

Inserting the Monte Carlo estimator I(N) into Equation 3.8 and rearranging the terms
yields

V
[

I(N)
]
=

1
N

V
[

f (X)

pX(X)

]
. (3.9)

12

3.2 Random Walks

This immediately shows the problem of Monte Carlo integration: The variance of the
estimate I(N) only decreases linearly with respect to N, and therefore the standard de-
viation only decreases proportionally to

√
N. In other words, to decrease the expected

integration error by a factor of two, we must increase N by a factor of four, a relatively
poor convergence rate.

It is worth noting that the convergence rate of the Monte Carlo estimator is indepen-
dent of the dimensionality of the integration problem, unlike other numerical integra-
tion techniques such as quadrature. This makes it suitable to integration problems in
high-dimensional domains such as path space.

The variance of the Monte Carlo estimator greatly depends on the choice of sampling
density. In general, the closer the sampling density approximates the integrand, the
lower the variance; this is a technique called importance sampling. To demonstrate, we
can compute the variance of the estimator using the “perfect” sampling density, which
is proportional to the integrand. Consider p∗(x) = c f (x). Then

V
[

f (X)

p∗(X)

]
= V

[
f (X)

c f (X)

]
= V

[
1
c

]
= 0 . (3.10)

In other words, the perfect sampling density leads to a variance of 0, and the exact
value of I can be obtained taking only a single sample. Unfortunately, computing the
correct proportionality factor c involves first solving the integral of interest – that is, to
compute the solution of the integral using the perfect Monte Carlo estimator, we must
first compute the solution of the integral. As such, we are not usually able to perform
perfect importance sampling.

However, it is still possible to importance sample part of the target function. In par-
ticular, the measurement contribution function is a product of a number of terms, and
although importance sampling their product may be difficult, it is still possible to im-
portance sample the terms individually. This is also called local importance sampling and
will be explored in the next section in more detail.

How effective the probability density of transport paths is at approximating the path
contribution function is the main factor determining the efficiency of a rendering algo-
rithm, and all of the rendering techniques presented in this chapter only differ in their
choice of sampling scheme.

13

3 Solving the Light Transport Problem

Emission

Scattering

Termination

Propagation

Figure 3.1: Illustration of four different events on an example random walk

3.2 Random Walks

Core to all Monte Carlo ray tracing methods is the sampling of transport paths. As
mentioned at the end of the previous section, the probability density with which these
transport paths are generated should ideally be proportional to the measurement con-
tribution function of the path. As it is not generally possible in practice to jointly gen-
erate all vertices of a path with density proportional to the path contribution, paths are
sampled incrementally instead, in a process referred to as a random walk through the
scene.

In a random walk, we incrementally add more vertices to the path by importance sam-
pling the different terms of the path contribution function in sequence. We describe
these terms and how to sample them in the next few paragraphs. We also show an
illustration of an example random walk in Figure 3.1.

Random walks can begin at either end of the transport path – that is, at a light source or
at the camera. In order to use the same notation for both directions, we refer to paths
as ȳ = y0 . . . yk in this section. Depending on the sampling direction, y0 can either
refer to a vertex on an emitter or a vertex on the camera aperture. The discussion of
importance sampling remains largely the same for both directions.

Camera Sampling To begin a random walk, we need to determine the location of
the first vertex on the path, y0. When the random walk starts at the camera, a good
choice is to importance sample the sensor response. In most cases, the sensor response
is invariant with respect to points on the aperture, and y0 can be chosen uniformly on
the camera aperture. To obtain the direction ω0 leaving the first vertex, we need to
importance sample the sensor response with respect to directions. We can either select

14

3.2 Random Walks

a single pixel estimate Ij to which the path should contribute, in which case we should
importance sample its associated reconstruction filter [ESG06]; or we can importance
sample the sensor response We over the entire image plane, allowing the traced path
to contribute to all pixel estimates at once by splatting it to the image.

Emitter Sampling When the random walk starts on a light source, we should obtain
y0 and ω0 by importance sampling the emitted radiance. In the simplest case, the emit-
ted radiance is piecewise constant with respect to positions and is completely diffuse,
i.e. the directional part of the emitted radiance only depends on the angle between ω0

and the surface normal, allowing for a straight-forward importance sampling scheme.
However, some light sources may exhibit spatially varying emission (e.g. textured light
sources), directionally varying emission (e.g. IES lights [Ill91]) or both (e.g. environ-
ment maps [Deb98]) and require special treatment. We refer the reader to Pharr and
Humphreys [PH10] for a complete discussion.

Propagation Given a vertex on the path yi and the outgoing direction ωi at that
vertex, the next vertex on the path can be easily obtained using the ray cast function,
yi+1 = xM(yi, ωi). The ray cast function returns the surface point closest to yi along
the direction ωi. It is defined in terms of a utility function dM(x, ω), which returns the
smallest distance d > 0 such that x + ω d ∈ M. If no such distance exists, dM(x, ω)

returns ∞. The ray cast function is then

xM(x, ω) = x + ω dM(x, ω) . (3.11)

Scattering In order to obtain the outgoing direction ωi at surface vertex yi with i > 0,
we should importance sample the terms appearing in the scattered radiance, i.e. the
product of BSDF and foreshortening term, fS(x,−ωi−1, ωi)|N(x) · ωi|. For some ma-
terials, such as perfectly diffuse reflectors, simple sampling routines exist [DHM+01]
that can perfectly importance sample this product, but in the general case, the sam-
pling distribution only approximately matches the integrand of the scattered radiance
at that point. Indeed, certain BSDFs such as microfacet models [WMLT07] can signifi-
cantly contribute to the variance in the rendered image.

Termination Random walks terminate naturally if the path leaves the scene – that is,
the path stops at vertex yi if ||yi − yi−1|| is not finite. Additionally, the rendering al-
gorithm itself sometimes imposes a maximum path length, and the random walk is al-

15

3 Solving the Light Transport Problem

lowed to terminate after a certain number of scattering events. However, in closed en-
vironments, the path may not leave the scene, and the random walk never terminates
if no maximum path length is imposed. This is problematic, since non-terminating
random walks cause the surrounding rendering algorithm to grind to a halt and never
produce an image. A simple way of achieving finite path lengths without imposing
an artificial maximum path length is to employ Russian roulette [AK90], which proba-
bilistically terminates the random walk. At every vertex, we choose an arbitrary con-
tinuation probability wi. With probability wi, the random walk continues after vertex
yi and its pdf is decreased by a factor of wi; with probability 1− wi however, the ran-
dom walk is terminated at yi. Using Russian roulette, paths of any length still have a
positive probability of being sampled, but the random walk always terminates in fi-
nite time if the continuation probabilities are chosen carefully. Decreasing the pdf by
the appropriate factor also ensures that the Monte Carlo estimate still converges to the
correct solution when Russian roulette is used.

Path probability density The path ȳ sampled by the random walk has an associated
pdf, p(y0y1 . . . yk), which can be viewed as a joint probability density function over all
vertices. Because the path is sampled incrementally, it reduces to the product

p(y0y1 . . . yk) = p(y0)
k

∏
i=1

p(yi|yi−1, yi−2, . . . , y0) . (3.12)

For our purposes, the pdf of the first vertex is usually proportional to either the emit-
ted radiance or the sensor response, whereas the pdfs of the subsequent vertices are
proportional to some of the terms in the geometry factor and the BSDF. We will make
use of this fact when we review different path sampling techniques in the following
sections. Note how the pdfs of all vertices but the first are conditioned on the path that
precedes them. This is because the sampling distribution at a vertex usually adapts to
the preceding vertices; for example, most BSDF sampling strategies take the incoming
direction into account when sampling an outgoing direction, and the resulting sam-
pling distribution for a vertex yi depends on the two vertices that precede it. More
sophisticated sampling strategies that are conditioned on longer prefixes of the path
are also possible [GKH+13].

16

3.3 Path Tracing

3.3 Path Tracing

Arguably one of the simplest Monte Carlo methods for global illumination is path trac-
ing, introduced by Kajiya [Kaj86]. Path tracing is also sometimes called unidirectional
path tracing due to its mode of operation, which we illustrate in Figure 3.2 (a).

In path tracing, transport paths are sampled using a random walk starting at the cam-
era, resulting in a camera path z̄ = z0z1 . . . zk with z0 on the camera aperture. From
this single camera path, we can construct k full transport paths of different lengths
with zi . . . z1z0, i = 1, . . . , k – that is, any emitting surface encountered on the camera
path contributes to the image. The contribution F of the sampled camera path is then
simply

F =
k

∑
i=1

f (zi . . . z1z0)

p(z0z1 . . . zi)
. (3.13)

Many terms in Equation 3.13 appear in both the numerator and the denominator and
cancel out, in particular the geometry factors. The remaining terms are simple to com-
pute, and the sum can be be computed incrementally as the path is being traced, mak-
ing path tracing conceptually simple and easy to implement. Computing the sample
contribution incrementally also removes the need to keep the full path in memory at
once and enables interesting optimization strategies targeted at tracing a large number
of rays simultaneously [LKA13, ENSB13].

3.3.1 Next Event Estimation

Tracing paths unidirectionally from the camera using locally importance sampled ran-
dom walks includes all factors of the measurement contribution in the sampling den-
sity except the emitted radiance Le. Unfortunately, not importance sampling this term
can cause excessive variance in most scenes: We expect Le to be zero for the majority
of the surfaces in the scene, and very large for a small subset ofM (the light sources).
Unidirectional path tracing relies on BSDF sampling to find surfaces with large emis-
sion, which is inadequate for most scenes (Figure 3.3 (a)). Something as simple as an
outdoor scene lit by a far-away sun can result in unrecognizably noisy images when
naive path tracing is used.

To remedy this issue, we can employ a technique called next event estimation. In next
event estimation, we sample a “one vertex path” ȳ = y0 starting on a light source

17

3 Solving the Light Transport Problem

(a) (b) (c)
Path Tracing Next Event Estimation Bidirectional Path Tracing

Figure 3.2: Illustration of the different path sampling strategies in path tracing, next event esti-

mation and bidirectional path tracing

in addition to the camera path used in naive path tracing. We then obtain the trans-
port paths y0zi . . . z0, i = 0, . . . , k by connecting the one vertex on the emitter with all
vertices on the camera path. Figure 3.2 (b) illustrates this sampling procedure for an
example light path. The resulting contribution F can then be written as

F =
k

∑
i=0

f (y0zi . . . z0)

p(z0 . . . zi)p(y0)
. (3.14)

Different to the naive path tracing algorithm, the emitted radiance that appears inside
f in the numerator is likely to be matched with a proportional factor p(y0) in the de-
nominator. This can greatly improve variance in scenes where the light sources are
small and difficult to hit with BSDF sampling alone. However, unlike the naive path
tracing algorithm, the BSDF at zi as well as the geometry factor between the last and
second last vertex on the full transport path are no longer importance sampled. Be-
cause of this, next event estimation can perform poorly in some cases, especially when
the BSDF at zi is very peaked and Le is not (Figure 3.3 (b)).

It is worth noting that this section describes a simplified version of next event esti-
mation; in practice, next event estimation is normally only employed with a few ad-
ditional optimizations. In particular, paths of length one (i.e. with only two vertices)
are normally handled with unidirectional sampling, since variance from these paths
is low. Additionally, one would normally sample a new vertex on the light source for

18

3.3 Path Tracing

(a) Path Tracing (b) Next Event Estimation (c) MIS of (a) and (b)

Figure 3.3: Renderings using path tracing (a), next event estimation (b) and MIS of the two (c).

Both (a) and (b) show sampling deficiencies for certain material-emitter combina-

tions. MIS is robust over all combinations. Modeled after a scene by Eric Veach.

each connection with the camera path to reduce correlation. For this discussion, we
will stick with the simplified version, as it is better comparable to fully bidirectional
sampling methods.

3.3.2 Multiple Importance Sampling

Naive path tracing and next event estimation are two different sampling techniques
that produce transport paths with different probability densities. Either technique in
isolation works well in some cases and poorly in others. Rather than using only one
technique or the other, a better idea is to use both at the same time and weight them
in a special way such that we will prefer a technique if it samples a path much better
than the other technique and vice-versa.

This is a technique referred to as multiple importance sampling (MIS) and can be formal-
ized using a multi-sample estimator [VG95]. If we have N sampling techniques at our
disposal, each with sampling density pi, i = 1, . . . , N respectively, and we draw one
sample xi from each technique, then the multi-sample estimator of a function f in its
simplest form is

F =
N

∑
i=1

wi(xi)
f (xi)

pi(xi)
. (3.15)

Here, wi are the MIS weights of the techniques. As long as the MIS weights form a parti-
tion of unity and wi(xi) > 0 only when pi(xi) > 0, F will converge to the correct result.
We are free to choose any MIS weights that fulfill these conditions. Veach proposes the
balance heuristic, a provably good choice of MIS weights, defined as

wi(x) =
pi(x)

∑N
j=1 pj(x)

. (3.16)

19

3 Solving the Light Transport Problem

(a) Path tracing, 32 paths/pixel (b) Bidirectional path tracing, 32 paths/pixel

Figure 3.4: Comparisons of renderings produced by path tracing with next event estimation

and MIS (a) and bidirectional path tracing (b) at an equal number of paths per

pixel. Bidirectional path tracing has many more sampling techniques at its disposal,

leading to lower variance compared to path tracing. Modeled after a scene by Eric

Veach.

The intuition behind the balance heuristic is that a large probability density is usually
a good indicator when a technique does well at generating a sample. Therefore, the
balance heuristic will give a sampling technique a large weight if its sampling density
is large for a given sample compared to the other techniques.

We can apply multiple importance sampling to path tracing with the purpose of obtain-
ing a robust combination of next event estimation and naive path tracing (Figure 3.3
(c)). A path x̄ = x0x1 . . . xk can be sampled in two different ways: With unidirectional
path tracing, x̄PT = zk . . . z0, and with next event estimation, x̄NEE = y0zk−1 . . . z0. This
allows us to insert the probability densities of either technique into Equation 3.16 to
directly compute MIS weights with which to combine the techniques.

3.4 Bidirectional Path Tracing

In the previous section, we discussed two possible sampling techniques for transport
paths of a given length: Full unidirectional path tracing, or next event estimation. Bidi-
rectional path tracing (BDPT) [LW93, VG94, LW96] supplements these with a whole fam-

20

3.4 Bidirectional Path Tracing

ily of sampling techniques: Paths of length k can be constructed with k + 2 different
sampling techniques in BDPT, as opposed to the 2 sampling techniques discussed pre-
viously.

To do this, BDPT obtains an emitter subpath ȳ = y0 . . . yNE and a camera subpath z̄ =

z0 . . . zNC using two random walks started from the light sources and the camera, re-
spectively. BDPT then constructs full transport paths x̄s,t = y0 . . . ys−1zt−1 . . . z0 by
connecting prefixes of the subpaths with each other, which we illustrate in Figure 3.2
(c). Here NE and NC are the lengths of the emitter- and camera subpaths, and s and t are
the number of vertices on the emitter- and camera subpaths used for the connection.

We can see that a path x̄ of length k can be generated by k + 2 different sampling tech-
niques in BDPT, depending on how many vertices are taken from the emitter subpath
and how many from the camera subpath. Similar to before, it is a good idea to com-
bine the different sampling techniques using multiple importance sampling, since all
of them have sampling deficiencies for certain types of paths. However, having k + 2
sampling techniques at our disposal rather than just 2 increases the chances of there
being at least one sampling technique that samples a given path well. The resulting
estimate for a pair of subpaths is then

F =
NE

∑
s=0

NC

∑
t=0

ws,t(x̄s,t)
f (x̄s,t)

ps(x̄s,t)
. (3.17)

Here, we used the path probability ps(x̄), which is the probability density of generating
x̄ using the s-th technique. It is defined as

ps(x0 . . . xk) = p(x0 . . . xs−1)p(xk . . . xs) . (3.18)

That is, it is the product of probability densities of generating the two subpaths indi-
vidually. ps also allows to easily define the MIS weights ws,t computed with the balance
heuristic:

ws,t(x̄) =
ps(x̄)

∑s+t
i=0 pi(x̄)

. (3.19)

Other choices of weighting heuristic are possible [Vea98], but we will stick with the
balance heuristic throughout this thesis for simplicity.

Figure 3.4 demonstrates the advantage of bidirectional path tracing over path tracing in
a rendering of an indoor scene at equal sample count. Figure 3.5 shows the individual
sampling techniques comprising Figure 3.4 (b), both with and without MIS.

21

3 Solving the Light Transport Problem

s=0,t=3 s=1,t=2 s=2,t=1

s=0,t=4 s=1,t=3 s=2,t=2 s=3,t=1

s=0,t=5 s=1,t=4 s=2,t=3 s=3,t=2 s=4,t=1

s=0,t=6 s=1,t=5 s=2,t=4 s=3,t=3 s=4,t=2 s=5,t=1

s=0,t=3 s=1,t=2 s=2,t=1

s=0,t=4 s=1,t=3 s=2,t=2 s=3,t=1

s=0,t=5 s=1,t=4 s=2,t=3 s=3,t=2 s=4,t=1

s=0,t=6 s=1,t=5 s=2,t=4 s=3,t=3 s=4,t=2 s=5,t=1

Figure 3.5: Top: The individual sampling techniques used to generate image Figure 3.4 (b),

weighted with multiple importance sampling. Bottom: The same sampling tech-

niques, but this time without multiple importance sampling. Note how all tech-

niques have deficiencies for certain types of paths.

22

3.5 Markov Chain Monte Carlo Methods

3.5 Markov Chain Monte Carlo Methods

An interesting deviation from the Monte Carlo methods we’ve seen so far is the field
of Markov Chain Monte Carlo (MCMC) methods. Unlike the Monte Carlo methods dis-
cussed previously, MCMC methods make use of random samples that are not statisti-
cally independent.

A sequence of random variables X1, X2, X3, . . . is said to form a Markov chain if the
probability of the realization Xi+1 = xi+1 only depends on the state of the previous
random variable in the sequence, Xi. More formally,

Pr(Xi+1 = xi+1|X1 = x1, X2 = x2, . . . , Xi = xi) = Pr(Xi+1 = xi+1|Xi = xi) (3.20)

= q(xi → xi+1) . (3.21)

We will refer to the function q(xi → xi+1) as the transition distribution. If we wanted
to simulate a Markov process, that is, to obtain a particular realization of the Markov
chain, the transition distribution would inform us how to obtain the next state xi+1

given the current state xi.

Under certain conditions, the sequence of states x1, x2, x3, . . . will converge to a station-
ary distribution that is uniquely defined by the transition distribution. The core idea of
MCMC is to construct a Markov chain that has a stationary distribution proportional to
an arbitrarily chosen target function. The distribution of states visited by the Markov
chain will then in the limit be proportional to the target function - in other words, the
states of such a Markov chain importance sample the target function.

Remember that a Markov chain (and its stationary distribution, if it exists) is defined
by its transition distribution. The Metropolis-Hastings algorithm [MRR+53, Has70]
describes how to turn a transition distribution that does not result in the desired sta-
tionary distribution into one that does. Given a proposal distribution T(x → y) and
a target distribution π, the Metropolis-Hastings rule obtains the next state y from the
current state x in the following steps:

1. Sample the proposal state x′ from the proposal distribution T(x→ x′)

2. Compute r(x→ x′) := min
{

1, π(x′)T(x′→x)
π(x)T(x→x′)

}
3. y =

x′, with probability r

x, otherwise

The quantity r(x → x′) is known as the acceptance probability and is what reshapes the

23

3 Solving the Light Transport Problem

stationary distribution of the Markov chain to the desired target distribution. With
probability r, the proposal state x′ is accepted as the new state of the Markov chain,
and with probability 1− r it is rejected and the current state is repeated.

Let us now review how to use such a Markov chain to integrate a target function.
Assume we wanted to integrate a function f (x) over some domain Ω. We can use
the Metropolis-Hastings algorithm to define a Markov chain with state space Ω and
stationary distribution f . Running this Markov chain for N steps yields the states
x1, . . . , xN visited by the chain. These are realizations of a random variable, and insert-
ing into the Monte Carlo estimator yields

∫
Ω

f (x)dµ(x) ≈ 1
N

N

∑
i=1

f (xi)

p(xi)
. (3.22)

In order to compute an estimate of the integral using samples produced by a Markov
chain, we need to compute the currently unknown quantity p(xi). The Metropolis-
Hastings algorithm guarantees us that the states are distributed proportionally to the
target function f , i.e. p(xi) = c f (xi). The proportionality factor c is required to make
sure p is a valid probability density (i.e. it integrates to 1) and is defined as

c =
1∫

Ω f (x)dµ(x)
. (3.23)

Unfortunately, computing this proportionality factor requires us to solve the desired
integral before we can use Metropolis-Hastings to solve the desired integral, making it
a pointless endeavour. Indeed, straight-forward applications of MCMC to integration
problems only work if the probability density cancels out (when computing expected
values, for example).

Fortunately, rendering an image requires us to solve not just one, but many measure-
ment integrals Ij, and the majority of the integrand is shared among them. Recall the
path integral

Ij =
∫
P

f j(x̄)dµ(x̄) . (3.24)

Using the definition of the importance and the measurement contribution function,
this can be rewritten as

Ij =
∫
P

hj(x̄) f (x̄)dµ(x̄) . (3.25)

We can see that all measurements share the same evaluation of the path contribution
to the entire image. Let us now define a Markov chain with state space P and target

24

3.5 Markov Chain Monte Carlo Methods

distribution f (x̄). The Markov chain constributes to the estimates of all measurement
integrals at the same time; given states x̄1, . . . , x̄N visited by the Markov chain, the
resulting estimates will be

Ij ≈
1
N

N

∑
i=1

hj(x̄) f (x̄i)

p(x̄i)
=

1
N

N

∑
i=1

hj(x̄) f (x̄i)

c f (x̄i)
=

1
N

N

∑
i=1

hj(x̄)
c

. (3.26)

Here, the proportionality factor is

c =
1∫

P f (x̄)dµ(x̄)
. (3.27)

This Markov chain contributes to M pixel estimates at once. While it still requires
computing a proportionality factor, this factor is shared among all estimates, making
it feasible to approximate the proportionality factor using a secondary Monte Carlo
estimator (e.g. bidirectional path tracing) with a large number of samples. The esti-
mation of the proportionality factor is amortized over all M pixels; usually, M is large
(on the order of 106), and the computation time spent on the proportionality factor is
insignificant compared to the time spent running the Markov chain.

This results in a conceptually simple algorithm that applies MCMC sampling to the
light transport problem, proceeding as follows

1. Estimate c−1 =
∫
P f (x̄)dµ(x̄) using a secondary estimator, such as BDPT.

2. Choose x̄1 arbitrarily

3. For i = 1, . . . , N:

a) Sample ȳ from T(x̄i → ȳ)

b) x̄i+1 =

ȳ, with probability f (ȳ)T(ȳ→x̄i)
f (x̄i)T(x̄i→ȳ)

x̄i, otherwise

c) Splat c−1/N to the image at x̄i+1

An interesting problem is the choice of initial state x̄1. We follow Veach and Guibas [VG97],
who propose an initialization technique that chooses the initial state while computing
the normalization factor, simultaneously ensuring unbiasedness of the MCMC estima-
tor. The reader is referred to their work for full discussion.

The MCMC method described above operates on a scalar target distribution f (x̄); how-
ever, we are more likely to encounter an RGB-valued contribution function in practice.
A common solution is to use a scalar importance function f ∗(x̄) that attempts to match
all color channels as the target distribution of the Markov chain. Frequently, the lu-
minance of f (x̄) is used, although other choices are possible [HH10]. In the MCMC

25

3 Solving the Light Transport Problem

method outlined above, the quantity splatted to the image plane then only needs to be
multiplied by an additional f (x̄)/ f ∗(x̄) to support color information as well.

The remaining issue is the choice of proposal distribution T(x̄i → ȳ). Similar to impor-
tance sampling, MCMC methods benefit from proposal distributions that approximate
the target distribution well, and finding good proposal distributions has been the main
focus of research on MCMC for the light transport problem. Indeed, most MCMC ren-
dering algorithms only differ in how they generate proposals.

3.6 Metropolis Light Transport

Markov Chain Monte Carlo was first applied to the light transport problem by Veach [VG97]
in the Metropolis Light Transport (MLT) algorithm, which is an MCMC method that op-
erates directly in path space.

MLT contains several ways of obtaining proposals, which are classified into perturba-
tions that keep the structure of the light path fixed while changing the vertex positions
by a small amount, and mutations that perform large changes to the path and are al-
lowed to change its structure.

Intuitively, we expect the path contribution function to be at least somewhat coherent,
such that similar paths have similar contribution. Perturbations locally explore regions
of path space, producing many similar paths with (hopefully) similar contribution that
are likely to be accepted. On the other hand, high contribution regions tend to form
“islands” in path space surrounded by low-contribution regions, and perturbations
may have trouble jumping from one island to the next, since they only move in small
steps through path space. It is the task of mutations to propose large changes to the
path in order to fully explore path space. Such mutations usually suffer from low
acceptance rates, but are required in order to account for all light transport.

3.7 Primary Sample Space Metropolis Light Transport

A significantly simpler version of MLT, referred to as Primary Sample Space Metropolis
Light Transport (PSSMLT), was proposed by Kelemen et al. [KSKAC02]. The main idea
behind PSSMLT is that unbiased rendering algorithms can be understood in terms of
a deterministic path sample function S(u) that maps points u in the space of random
numbers, the primary sample space U = [0, 1]∞, to path space (Figure 3.6). The path

26

3.7 Primary Sample Space Metropolis Light Transport

(a) Primary Sample Space (b) Path Space

Figure 3.6: Primary Sample Space MLT runs a Markov chain in primary sample space (a) to

obtain samples in path space (b)

integral can then be written as an integral over primary sample space via a change of
variables

∫
P

f (x̄)dµ(x̄) =
∫
U

f (S(u))
∣∣∣∣dS−1(u)

du

∣∣∣∣du (3.28)

=
∫
U

f (S(u))
1

p(S(u))
du . (3.29)

Notably, the Jacobian determinant arising from the change of variables is simply the
probability density of generating a path from a set of random numbers. A Monte Carlo
estimator of Equation 3.29 is given by

Ij ≈
1
N

N

∑
i=1

f j(S(ui))

p(S(ui))
, (3.30)

where the u1, u2, . . . , uN are uniformly distributed in U . Note that Equation 3.30 is the
same Monte Carlo estimator introduced in Section 3.1, only this time derived explicitly
in terms of a mapping from random numbers to paths.

The idea of PSSMLT is then to define a Markov chain operating in primary sample
space rather than path space. First, we define the relevant quantities in primary sample

27

3 Solving the Light Transport Problem

space in terms of their path space counterparts:

p̂(u) := p(S(u)) , (3.31)

f̂ (u) := f (S(u)) , (3.32)

f̂ ∗(u) := f ∗(S(u)) , (3.33)

Ĉ(u) :=
f̂ (u)
p̂(u)

, (3.34)

Ĉ∗(u) :=
f̂ ∗(u)
p̂(u)

. (3.35)

PSSMLT intends to sample the integrand of Equation 3.29, labelled Ĉ(u), using the
scalar importance function Ĉ∗(u) as target distribution.

This has two key advantages: Firstly, the state space U has significantly simpler struc-
ture than path space, allowing the use of a very simple proposal distribution (e.g. a
Gaussian distribution). The proposal distributions in this space are usually symmetric,
i.e. T(u → u′) = T(u′ → u), and cancel out when computing the acceptance proba-
bility. A second advantage is that the integrand Ĉ is significantly flatter than the path
contribution function. This is because the path sample function is designed to impor-
tance sample parts of the path contribution function, and many of the terms appearing
in Equation 3.34 cancel out. We can also think of S as “warping” the path contribu-
tion function via importance sampling, stretching out peaks in path space over a larger
region in primary sample space.

Kelemen et al. propose two different ways of obtaining proposals in primary sample
space: Using a small step perturbation that samples a proposal within a small region
around the current state; and a large step mutation that completely replaces the current
state with numbers sampled uniformly random in [0, 1]. The latter mutation ensures
that the Markov chain is able to reach any part of primary sample space with positive
probability.

The resulting algorithm is remarkably simple and, assuming a symmetric proposal
distribution, proceeds as follows:

1. Estimate c−1 =
∫
U Ĉ(u)du using a secondary Monte Carlo estimator

2. Choose u1 arbitrarily

3. For i = 1, . . . , N:

a) v =

UNIFORMRANDOM(), with probability plarge

PERTURB(ui), otherwise

28

3.7 Primary Sample Space Metropolis Light Transport

b) ui+1 =

v, with probability Ĉ(v)
Ĉ(ui)

ui, otherwise

c) Splat c−1/N to the image,

where plarge ∈ [0, 1] is the large step probability, a parameter that determines the ratio
of large steps to small steps.

PSSMLT as a rendering algorithm makes very few assumptions about the underlying
path sample function S and views it as a black blox that turns a vector of random
numbers into a light path. This allows it to be employed on top of a variety of existing
rendering methods, including path tracing, bidirectional path tracing and progressive
photon mapping [HJ11].

Some special care is required when dealing with bidirectional path tracing, however,
since it generates potentially many paths from a single sample and combines them
with MIS. Using the MIS weighted sum of contributions from all transport paths leads
to the undesirable situation where the MCMC algorithm will prefer longer paths over
shorter paths, since they lead to more connections and therefore a higher contribu-
tion. However, longer paths are also much more expensive to evaluate, increasing the
average cost per sample when an MCMC sampler is used.

Kelemen et al. propose to use the maximum heuristic when combining the different path
contributions, which will simply select the transport path with the largest probability
density and discard all other paths. The contribution of two BDPT subpaths is then
simply the contribution of the connection with the largest probability density. This has
the advantage that longer paths do not intrinsically contribute more to the image than
shorter paths.

3.7.1 Rippling Effects

The “black box” view of the path sample function makes PSSMLT a versatile algorithm
that can be employed in conjunction with many different sampling methods. However,
having limited knowledge about how dimensions of u map to paths can interfere with
the behaviour of the MCMC sampler. In particular, this will manifest as small steps in
primary sample space leading to large changes to the sampled path, which can hinder
local exploration of primary sample space. This can happen due to a variety of reasons,
which we will discuss in Chapter 4 as well as Section 5.2 and Section 5.3 in more detail.

One of the simpler causes of unintended large changes to the path are due to “ripple”

29

3 Solving the Light Transport Problem

effects. All sampling techniques discussed so far utilize random walks to generate part
of the path. Performing a random walk implicitly associates dimensions of u with
vertices on the path, and small steps perform well as long as this association remains
consistent over a large number of transitions. However, what can happen is that a
small change to elements of u cause the random walk to use a different amount of ran-
dom numbers to sample a particular vertex (e.g. due to a change in BSDF). This leads
to a ripple effect across all subsequent vertices on the random walk as the association
of random numbers to vertices is shifted, and causes a large change to the path.

If there is an upper bound to how many random numbers the random walk will con-
sume to produce a single vertex, then a simple remedy is to make the association of
random numbers to vertices explicit and allocate a fixed number of dimensions in u
for each vertex. We will denote the random numbers reserved for the i-th vertex as ui.
Such an explicit association has a number of benefits, including notational simplicity,
and will be assumed for the rest of this thesis.

Avoiding ripple effects is even more important in bidirectional methods. A naive im-
plementation of BDPT first uses random numbers u0, . . . , us−1 to sample an emitter
subpath with s vertices and us, . . . , us+t−1 to sample a camera subpath with t vertices.
If s changes even by just one vertex, the association of random numbers to vertices
is changed for the entire camera subpath, equivalent to replacing it by a completely
different path.

Kelemen et al. propose to use the elements at odd- and even numbered indices in the
random number vector for different subpaths, avoiding this problem. For the rest of
this thesis, we assume that the subpaths are sampled using the naive approach for
notational simplicity, but opt to use two different random number vectors entirely in
our implementation, one for each subpath. This approach is also followed by other
rendering systems, such as Mitsuba [Jak10].

3.8 Multiplexed Metropolis Light Transport

Multiplexed Metropolis Light Transport (MMLT), introduced by Hachisuka et al. [HKD14],
combines the concepts of MCMC sampling with multiple importance sampling.

We reviewed multiple importance sampling in Section 3.3.2 with the purpose of op-
timally combining multiple sampling techniques. It’s not clear how to combine MIS
with PSSMLT, since the latter intrinsically only supports a single sampling technique,

30

3.8 Multiplexed Metropolis Light Transport

which is S. Even though algorithms such as BDPT offer up to k + 2 sampling tech-
niques for paths of length k, this issue was sidestepped in PSSMLT with the maximum
heuristic, which simply selects the path with the highest probability density, effectively
hiding the existence of multiple sampling techniques from the Markov chain.

MMLT introduces a way of exposing the different sampling techniques available in
BDPT as well as their MIS weights, so that the sampling technique can be selected
by the Markov chain. Bidirectional path tracing offers k + 2 sampling techniques for
a path of length k, which we will denote as Si(u), i = 0, . . . , k + 1. MMLT uses the
extended state space (t, u), which specifies both the position in primary sample space as
well as the sampling technique St(u) that should be used to transform it into a path.
The parameter t is then changed alongside u as the Markov chain proceeds from one
state to the next.

In order to incorporate MIS, MMLT uses the target distribution ŵt(u)Ĉ∗t (u), which is
the product of the MIS weight and the path contribution of the t-th technique,

Ĉ∗t (u) = f ∗(St(u)) . (3.36)

Because the MIS weight is part of the target distribution, the contribution of sam-
pling techniques inappropriate for the current path is heavily downweighted, and the
Markov chain will automatically try to move away from such sampling techniques.

The main advantage of MMLT over PSSMLT is computational efficiency. Recall that
PSSMLT needs to consider all possible connections that could be formed between the
emitter- and camera subpath. Even when the maximum heuristic is used, the proba-
bility densities of all generated paths need to be computed before one subpath can be
selected. In contrast, MMLT makes the choice of sampling technique part of the state
of the Markov chain. To evaluate a sample, MMLT only ever needs to consider a single
connection between the two subpaths.

For efficiency reasons, MMLT splits up the integrand and runs a separate Markov chain
for each path length. This involves estimating a separate normalization factor and
initial state for each Markov chain, which is done in a similar manner to the unbiased
initialization introduced by Veach et al. [VG97]. Each Markov chain then operates in a
state space (t, uk) ∈ {0, . . . , k + 1} × [0, 1]O(k), where k is the length of paths handled
by the Markov chain. Rather than introducing a separate discrete perturbation for
the technique index t, Hachisuka et al. propose to simply use one additional random
number uk,t to determine the technique as t = b(k + 2)uk,tc. This allows the technique
index to be perturbed and mutated using the original PSSMLT proposal distributions.

31

3 Solving the Light Transport Problem

Hachisuka et al. note that a customized proposal sampling strategy for the technique
index might prove beneficial. In this thesis, we show how to improve the performance
of MMLT by taking the technique index into special consideration during large steps
(Section 4.3) and small steps (Section 5.2).

32

CHAPTER4
Annotated Primary Sample Space

In Section 3.7, we reviewed PSSMLT as an MCMC method in primary sample space
that views the underlying path sampling method as a black box that turns a vector of
random numbers into a transport path. This allows it to be employed on top of a va-
riety of existing rendering methods, including path tracing, bidirectional path tracing
and progressive photon mapping. Unfortunately, these rendering methods are usually
not implemented with PSSMLT in mind, and their use of random numbers can heavily
interfere with the behaviour of the Markov chain.

In this chapter, we relax the black box perspective a little and explore two applications
where exposing slightly more information about the underlying path sampling algo-
rithm and its use of the random number vector can be leveraged to generate proposals
more robustly. This requires some cooperation between the path sampling function
and the Markov chain, but our proposed solutions are conceptually simple and easy
to implement. We conclude this chapter with a discussion of large steps in MMLT, and
propose an alternative large step based on bidirectional connections.

4.1 Resolution-Aware Proposals

One of the drawbacks of MCMC methods for light transport is insufficient control over
the distribution of samples on the image plane. This is in contrast to methods such as
path tracing or bidirectional path tracing, which can trivially stratify samples over the
image. Veach [VG97] proposes a special lens subpath mutation whose main purpose is
to stratify samples over the image plane. Energy-Redistribution Path Tracing [CTE05]
is an MCMC method that explores path space starting with a set of initial paths, which
can be carefully chosen to be stratified over the image plane. Although effective, these
techniques are generally difficult to reconcile with the primary sample space perspec-

33

4 Annotated Primary Sample Space

(a) Default PSSMLT small steps (b) Resolution-aware proposals

Figure 4.1: A diffuse wall rendered with PSSMLT. Using an isotropic proposal distribution in

primary sample space can lead to a stretched proposal distribution on the image

plane when the image is not square. This is made apparent by the resulting noise

pattern on the image (a). Scaling the proposal distribution of small steps to account

for the aspect ratio of the image achieves a more uniform and visually pleasing

distribution of the noise (b).

tive, and as such stratification can prove difficult in this context.

However, we can still improve the sampling distribution on the image plane using
knowledge about the resolution of the image. In both PSSMLT and MMLT, launching
a camera subpath involves selecting a position on the image plane, either explicitly
by selecting a pixel measurement or implicitly by sampling the sensor response. In
the majority of cases, the random walk will use two elements of the random number
vector and multiply them with the resolution of the image in order to sample a point
on the image plane.

Because PSSMLT and MMLT perform perturbations in primary sample space rather
than directly on the image plane, the distribution of perturbations on the image plane
is highly resolution dependent. For example, if an aspect ratio of 16:9 is used, isotropic
perturbations in primary sample space will on average move approximately twice as
far on the horizontal axis than on the vertical axis on the image plane, which leads to
an anisotropic, “stretched” distribution of the noise (Figure 4.1 (a)).

To remedy this issue, we propose to explicitly reserve two dimensions of the random
number vector for sampling a position on the image plane. The proposal distribution
of small steps for those two dimensions is then adjusted to rescale the horizontal axis
by the aspect ratio. The resulting noise distribution in the image is much more uniform
and visually pleasing (Figure 4.1 (b)).

There are other interesting ways this information could be used. For example, because

34

4.1 Resolution-Aware Proposals

(a) 1024x1024, (b) 512x512, (c) 256x256, (d) 256x256
PSSMLT PSSMLT PSSMLT Resolution-aware

proposals

Figure 4.2: A diffuse wall rendered with PSSMLT at different image resolutions. The average

step size of small steps in PSSMLT decreases as the resolution is decreased (a-c),

leading to increased correlation across pixels. Scaling the proposal distribution

in primary sample space to account for the image resolution greatly improves the

noise distribution at smaller resolutions (d)

of the way camera paths are sampled, decreasing the resolution of the image will at the
same time decrease the average step size, in pixels, of small step perturbations on the
image plane. This leads to the odd situation where smaller resolution images produced
with PSSMLT or MMLT tend to look worse than larger-resolution images of the same
scene, simply because the Markov chain performs smaller steps on the image plane on
average and tends to get stuck on a single pixel much longer than on the equivalent
larger-resolution image. Figure 4.2 demonstrates the resulting noise difference.

If the proposal distribution is already adjusted to account for the aspect ratio, it can
additionally be scaled in order to achieve a fixed average step size in pixels, regardless
of the image resolution. In some scenes, such a technique can significantly improve
noise in smaller-resolution images, which we demonstrate in Figure 4.2 (c). However,
such an adjustment will at the same time increase the average step size in path space
as the resolution is decreased. In scenes with difficult glossy-to-glossy transport, we
found that the average acceptance ratio drops as the resolution decreases, leading to
slower convergence rates when such a resolution adjustment is used. To remain robust
across a variety of scenes, we therefore only correct for aspect ratio and not resolution
in our implementation, but note that for some scenes, the latter adjustment can result
in significant noise improvements.

Another application of such an adjustment could be in the sampling of vertices on
light sources. For example, a rectangular ceiling light could show significant stretch-
ing along one dimension, leading to a similar anisotropic distribution of small steps.

35

4 Annotated Primary Sample Space

However, we expect a step size adjustment in these domains to have a less prominent
impact than on the image plane, and could show robustness issues when dealing with
sliver-like light sources, for example.

4.2 Constrained Discrete Choices

Discrete choices, i.e. mapping a random number to one of a discrete set of outcomes,
is not an unusual occurrence during random walks. For example, deciding whether
to reflect or refract on a dielectric surface, or whether to terminate a subpath using
Russian roulette, both transform an input random number into a discrete decision. We
observe that changing the outcome of a discrete choice usually leads to a large change
to the path: For example, changing the decision of whether to reflect or refract on a
dielectric surface will completely change the location of all subsequent vertices on the
path.

Small step perturbations in PSSMLT or MMLT are built on the assumption that a small
change in primary sample space will lead to a small change in path space. However,
we find that this stands at odds with discrete decisions: Changing an element of the
random number vector associated with a discrete decision will either lead to no change
at all, or a large change in the path and its contribution which is likely to be rejected.

We therefore propose to never perturb random numbers associated with discrete deci-
sions during small steps, since we do not expect a change in a discrete decision to lead
to a small change in the path contribution function. In order to do this, we annotate the
elements of the random number vector with information about whether it is used to
drive a discrete decision or a continuous mapping. When the path sampling algorithm
draws a random number, we instruct it to also pass a binary flag describing whether
the number is used to make a discrete decision or not. This flag is stored alongside
the random number vector. Elements which are flagged as discrete are left unchanged
during small steps.

The effects of constrained discrete choices are usually subtle, but in some scenes with
prominent light paths on dielectric surfaces it improves rendering performance signif-
icantly (Figure 4.3).

36

4.3 An Alternative Large Step Mutation

(a) BDPT (b) PSSMLT (c) PSSMLT with constrained
discrete choices

window

camera

Scene setup

Figure 4.3: The reflection of a room seen in a window looking out over darkness, rendered

with BDPT, PSSMLT and PSSMLT using our proposed modification at equal sample

count (64 paths/pixel). Rays reflecting off of the window have a very low proba-

bility of being sampled, and BDPT (a) has difficulty rendering this scene. PSSMLT

(b) performs better, but because it changes the random number associated with the

reflection decision, many proposals generated with small steps change the discrete

decision on the window and transmit instead, leading to a low average acceptance

ratio. Fixing discrete decisions during small steps (c) preserves low probability

paths that reflect off of the window.

4.3 An Alternative Large Step Mutation

The purpose of large step mutations in PSSMLT is to ensure that all points in primary
sample space can be reached with positive probability, a property of the Markov chain
called ergodicity. They are required to avoid getting stuck in small regions of primary
sample space; however, because they generate a completely new random number vec-

37

4 Annotated Primary Sample Space

tor while ignoring the current sample, they suffer from low acceptance rates in scenes
with difficult light transport. This is especially the case in Multiplexed MLT, which we
will examine in this section.

In Multiplexed MLT, one element of the random number vector is used to determine
the sampling technique that should be used to generate the path. Since individual
Markov chains in MMLT sample paths of a fixed length, choosing the sampling tech-
nique at the same time determines the lengths of the camera- and emitter subpaths.

This can lead to undesirable behaviour during large steps. A large step amounts to
replacing the random number vector, including the technique index, with uniformly
distributed random numbers; this means that without even looking at the subpaths we
are about to sample, we already dictate their exact lengths and the sampling technique
that should be used to construct the full path. For longer path lengths and scenes with
complex visibility, it is generally difficult to trace subpaths of an exact length with mu-
tually visible end vertices. The resulting full path can also be heavily downweighted
by MIS because an inadequate sampling technique was chosen to generate it. As such,
large steps in MMLT tend to generate proposals with low contribution and suffer from
low acceptance rates.

In this section, we propose an alternative large step based on bidirectional connections
that can greatly improve the average acceptance rate in complex scenes. The idea is
that instead of choosing the sampling technique before tracing the subpaths, we first
trace the subpaths, look at all k + 2 possible connections of length k between them and
then choose the sampling technique by randomly selecting one of the connections with
probability proportional to its contribution.

To properly reason about such an approach, we briefly review Multiple-Try Metropo-
lis (MTM) [LLW00]. The idea of the MTM method is to generate several proposals,
rather than one, and importance sample one of the proposals based on its contribu-
tion. Figure 4.4 illustrates this idea. In its simplest form, MTM proceeds as follows:

1. Draw N independent trial proposals, y1, y2, . . . , yN from T(x→ ·).

2. Compute w(yj → x) := π(yj)T(yj → x), j = 1, . . . , N

3. Choose y among the N trial proposals with probability proportional to w(yj → x)

4. Generate N − 1 variates x1, x2, . . . , xN−1 from T(y→ ·). Set xN = x.

5. Compute w(xj → y), j = 1, . . . , N

6. Compute rg(x→ y) := min
{

1, w(y1→x)+w(y2→x)+...+w(yN→x)
w(x1→y)+w(x2→y)+...+w(xN→y)

}

38

4.3 An Alternative Large Step Mutation

y6

y2 y4

y3

y5

y1

x

y

(a) Metropolis (b) Multiple-Try Metropolis

Figure 4.4: The Metropolis-Hastings algorithm (a) generates a single proposal and either rejects

or accepts it. Multiple-Try Metropolis (b) samples multiple trial proposals and se-

lects a single proposal from them. Here, the sizes of the red circles represent the

contribution of each proposal. The black arrow points to the selected proposal.

7. Accept y with probability rg(x→ y)

rg(x → y) is called the generalized M-H ratio. For N = 1 it reduces to the standard
Metropolis-Hastings acceptance probability.

The main benefit of the MTM method is that it allows considering multiple proposals in
one step, increasing the chances of producing a high-contribution sample that is likely
to be accepted. However, if generating the proposals or evaluating w(x → y) is the
bottleneck of the algorithm, then MTM is generally not beneficial: Although we only
produce N proposals, we have to generate and evaluate 2N − 1 samples to compute
the generalized M-H ratio. In an MMLT context, evaluating w(x→ y) is unfortunately
the most expensive part of the algorithm, since it involves tracing and connecting two
subpaths, so we do not expect standard MTM to provide much benefit here.

Segovia et al. [SIP07] previously applied MTM in the context of MLT; however, their
method relies on a packet tracing approach to amortize the evaluation of trial proposals
and variates. This requires restructuring the entire rendering algorithm to support
tracing multiple rays in a packet, increasing the implementation complexity.

We observe that if the trial proposals are allowed to be correlated, then we can cheaply
generate up to k + 2 trial proposals from one camera- and emitter subpath. To do this,
we first trace two subpaths up to length k, and in a manner very similar to bidirectional
path tracing, we connect all possible prefixes of the two subpaths that produce a full

39

4 Annotated Primary Sample Space

transport path of length k.

Although standard MTM requires the trial set to be independent, a modified algo-
rithm named Multiple Correlated-Try Metropolis (MCTM) [CL07] allows the trial set
to be correlated while still computing the correct acceptance ratio. MCTM modifies
the MTM algorithm in the following ways: The N trials are drawn jointly from the
proposal distribution T̃(x→ y1, y2, . . . , yN) instead of independently from T(x→ yi);
and the N − 1 variates are drawn jointly from the conditional distribution T̃(y →
x1, x2, . . . , xN−1 | xN = x). The rest of the algorithm stays identical.

Jointly sampling all trials from a joint distribution allows us to introduce correlation
between the sampled trials. In MCTM, it is assumed that the marginal proposal distri-
bution is equal to the original proposal distribution used in MTM, i.e.∫ ∫

. . .
∫

T̃(x→ y1, y2, . . . , yN)dy1 . . . dyi−1dyi+1 . . . dyN = T(x→ yi) . (4.1)

In our case, T(x → yi) is simply 1 everywhere, since we are concerned with large
steps. We are free to choose any joint proposal distribution, as long as we can show
that it reduces to 1 if all but one trial are integrated out. Not all choices of joint proposal
distribution are useful; in general, the structure we introduce to the distribution of the
trials should be beneficial somehow, for example by stratifying the trials or increasing
computational efficiency. In our case, we want all trials to share the same subpaths and
only wish to allow the connecting vertices to be different, since this way we only need
to trace one pair of subpaths, rather than N of them.

We now show how generating multiple connections from two subpaths can be formu-
lated as a joint proposal distribution. First, we write the state of the Markov chain x in
its extended state space form, x = (xt, xu), where xt is the technique index and xu is
the random number vector. We then use the joint distribution

T̃(x→ y1, y2, . . . , yN) =
N

∏
i=1

1
k + 2

δ(yu
i − yu

N) . (4.2)

Here, δ is the Dirac delta function. Such a proposal distribution assigns zero probability
to trial sets in which not all trial proposals share the same random number vector: In
those cases, yu

i − yu
N 6= 0 for some i, and δ(yu

i − yu
N) = 0. This compresses the state

space of the trial set into a plane in which all trial proposals share the same random
number vector, generating the same subpaths. Only the choice of sampling technique
– that is, the choice of connecting vertices – is allowed to be different. Note that the
technique index does not appear in this proposal distribution; in fact, this distribution
is constant with respect to the sampling techniques chosen for the trial proposals. This

40

4.3 An Alternative Large Step Mutation

means that the technique index is distributed uniformly in 0, . . . , k + 1, which also
explains the normalization factor 1/(k+ 2). In a similar vein, this proposal distribution
takes on the same value for all trial sets which share the same random number vector,
independent of the actual random number vector chosen. This means that the random
number vector shared across the trial set is distributed uniformly in U .

We can easily show that such a proposal distribution fulfills the property assumed in
MCTM: In this case, every integral in Equation 4.1 integrates over the extended state
space {0, 1, . . . , k + 1} × U . Each integral collapses at least one of the Dirac deltas and
sums over the technique index, resulting in a constant factor of k + 2, which cancels
with one of the 1/(k + 2) factors in Equation 4.2. The resulting marginal distribution
is 1 everywhere, which is equal to the original large step proposal distribution.

The conditional distribution is defined similarly, with all variates required to use the
same random number vector as x:

T̃(y→ x1, x2, . . . , xN−1 | xN = x) =
N−1

∏
i=1

1
k + 2

δ(xu
i − xu

N) . (4.3)

Sampling from these distributions is remarkably simple. We know that all of the trial
proposals share the same random number vector, which is distributed uniformly in U .
Therefore, to jointly draw y1, y2, . . . , yN trial proposals from T̃(x → ·), we first trace a
camera- and emitter subpath using uniformly generated random numbers. For each of
the yj, we then uniformly generate yt

j, i.e. we uniformly choose a sampling technique
and connect the corresponding vertices on the camera- and emitter subpath. All of the
yj use the same subpaths, generated once for the whole set.

Drawing the variates x1, x2, . . . , xN−1 from T̃(y→ · | xN = x) is even simpler, since the
random number vector is already given by the current state x and the two subpaths
have already been partially traced. We simply extend the subpaths until they are either
of length k or escape the scene and draw the variates by uniformly picking a sampling
technique for each, in the same manner as for the yj.

This is very close to the bidirectional mutation that we want. Unfortunately, because of
the way the proposals are drawn, the sampling techniques are picked uniformly, and
we are not guaranteed that each sampling technique appears exactly once (which is
what we would like).

Fortunately this is only a cosmetic problem. Consider the generalized M-H ratio:

rg(x→ y) := min
{

1,
w(y1 → x) + w(y2 → x) + . . . + w(yN → x)
w(x1 → y) + w(x2 → y) + . . . + w(xN → y)

}
. (4.4)

41

4 Annotated Primary Sample Space

Because the random number vectors are shared among trials and proposals, the weights
w can only take on one of k+ 2 different values – one for each sampling technique. That
is,

rg(x→ y) := min
{

1,
s0 w((0, yu)→ x) + . . . + sk+1 w((k + 1, yu)→ x)
t0 w((0, xu)→ y) + . . . + tk+1 w((k + 1, xu)→ y)

}
, (4.5)

where the si and ti count how many times the i-th sampling technique is selected for
the proposals and the variates, respectively. It holds that si ≥ 0, ti ≥ 0 and ∑ si = N,

∑ ti = N.

Now we divide both numerator and denominator by N, replacing the si with si/N and
similarly ti with ti/N:

rg(x→ y) := min
{

1,
(s0/N)w((0, yu)→ x) + . . . + (sk+1/N)w((k + 1, yu)→ x)
(t0/N)w((0, xu)→ y) + . . . + (tk+1/N)w((k + 1, xu)→ y)

}
.

(4.6)

Because the sampling techniques are chosen uniformly, we know that the probability of
the i-th technique being chosen for a sample is 1/(k + 2). We can view the ratio si/N
as a Monte Carlo estimator of 1/(k + 2), and similarly for ti/N. Since we know the
exact value that this estimator will converge to as we increase the number of proposals,
this allows us to directly draw from the limiting distribution as if we had generated
an infinite number of proposals and variates. Each si/N and ti/N is replaced with
1/(k + 2); however, all of these terms cancel. We are left with

rg(x→ y) := min
{

1,
w((0, yu)→ x) + . . . + w((k + 1, yu)→ x)
w((0, xu)→ y) + . . . + w((k + 1, xu)→ y)

}
. (4.7)

That is, each sampling technique appears precisely once, which is what we wanted.
We will refer to this mutation as a Multiple Correlated-Try Large Step (MCTLS).

4.3.1 Analysis

We will now have a closer look at the computational overhead of MCTLS compared to
MMLT large steps in order to evaluate whether such an approach brings any benefit.
To perform one MMLT large step, we need to trace two subpaths of combined length
k, requiring k ray tracing operations. In contrast, MCTLS has to trace two subpaths of
up to length k each and evaluate all k + 2 combinations between them, requiring 3k + 2
ray tracing operations. Additionally, evaluating the variates requires extending the
subpaths of the current state to length k and evaluating all k + 2 combinations between

42

4.3 An Alternative Large Step Mutation

3 4 5 6 7 8 9 10 11
Path length

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

A
v
e
ra

g
e
 A

cc
e
p
ta

n
ce

 P
ro

b
a
b
ili

ty

MMLT Large Steps

MCT Large Steps

Figure 4.5: Average acceptance probability of MMLT large steps and our proposed Multiple

Correlated-Try (MCT) large steps for the scene in Figure 4.6, plotted over different

path lengths. MMLT large steps have consistently low acceptance rates over all path

lengths, whereas the acceptance rates of MCT large steps increase as the path length

increases. This is because MCT large steps can cheaply generate more proposals for

longer paths.

them, requiring another 2k + 2 ray tracing operations. Assuming that ray tracing oper-
ations dominate the computational cost, we therefore expect MCTLS mutations to be
roughly five times more expensive than MMLT large steps on average. On the other
hand, one MCTLS mutation yields up to k + 2 proposals, whereas an MMLT large step
only results in one.

To evaluate the potential benefit of MCTLS over MMLT large steps, we measured the
average acceptance probability of MMLT large steps and MCTLS mutations in a scene
with complex visibility (Figure 4.6). We employed MMLT with either large steps or
MCTLS to draw proposals; no small steps were used. We plot the measured average
acceptance probability over different path lengths in Figure 4.5 for both mutations.

As expected, MMLT large steps are unlikely to result in proposals that are accepted,
and their average acceptance probability is consistently low over all path lengths. Pro-
posals generated with MCTLS are rejected similarly often for short paths, but their
average acceptance probability increases with the path length. At path length 11, pro-
posals generated with MCTLS are up to five times more likely to be accepted than

43

4 Annotated Primary Sample Space

(a) MMLT large steps (b) MCTLS mutations

Figure 4.6: An interior scene with complex visibility, rendered with purely MMLT large steps

(a) and our proposed MCTLS mutation (b), at equal render time. No small steps

were used. Once the increased render time is factored in, MCTLS no longer hold

an advantage over MMLT large steps in this scene. Modeled after a scene by Eric

Veach and Toshiya Hachisuka.

MMLT large step proposals.

Unfortunately, the improved acceptance probability of MCTLS is rougly matched by
its increased computational cost. For the same scene used before, we now show equal-
time renderings produced by either technique in Figure 4.6. Both images are similarly
noisy, which suggests that once the increased render time is taken into account, the
advantage of MCTLS is no longer clear.

Because the benefit of MCTLS in terms of acceptance probability increases with the
path length, whereas its computational overhead is a constant factor, it is conceivable
that a combination of MMLT large steps for short paths and MCTLS for long paths
could perform better than either technique in isolation. Such an approach requires
further evaluation.

44

CHAPTER5
Inverse Path Mappings

In Section 3.7, we described PSSMLT in terms of an opaque path sample function S(u)
that transforms points in primary sample space to paths. In this chapter, we are inter-
ested in the reverse process; that is, mapping a path back into the random numbers
that produced it. Such an inverse mapping has interesting applications in the context
of PSSMLT and MMLT.

In the following sections, we first briefly review random walks and give an explicit
description in terms of pseudo-code. We then discuss how to construct the inverse of
a random walk based on its explicit description, and how this can be used to invert
the path sample function for path tracing and bidirectional path tracing. Finally, we
conclude the section with two new perturbation strategies for PSSMLT and MMLT
that make use of the inverse path sampling function.

5.1 Inverse Random Walks

Random walks and inverse random walks are tightly related, and it’s not possible to
describe one without the other. We looked at random walks in detail in Section 3.2; we
give an explicit pseudo-code implementation based on that description in Algorithm 1.
It takes three arguments: The random number vector u, the maximum path length k,
and an adjoint flag that denotes whether the path starts at the camera or on a light
source. The first vertex is denoted as the root vertex and is sampled from either the
camera or a light source, depending on the direction of path construction. The function
will then repeatedly cast a ray and sample an outgoing direction at the next vertex until
the maximum path length is reached or the path leaves the scene.

To perform an inverse random walk – that is, to convert a path constructed via random
walk back to random numbers – we have to perform the inverse of every step of Al-

45

5 Inverse Path Mappings

Algorithm 1: RANDOMWALK(u, k, adjoint)

1 if adjoint then x0, ω0 ← SAMPLE We(u0) ;

2 ;

3 else x0, ω0 ← SAMPLE Le(u0) ;

4 ;

5 i← 0;

6 while ISFINITE(xi) ∧ i < k do

7 i← i + 1;

8 xi ← xM(xi−1, ωi−1);

9 ωi ← SAMPLE fS(xi,−ωi−1, ui);

10 return x0x1 . . . xi;

Algorithm 2: INVERSERANDOMWALK(x0x1 . . . xk, adjoint)

1 ωi ← xi+1−xi
||xi+1−xi || , i = 0, . . . , k− 1;

2 if adjoint then u0 ← INVERSESAMPLE We(x0, ω0) ;

3 ;

4 else u0 ← INVERSESAMPLE Le(x0, ω0) ;

5 ;

6 i← 0;

7 while i < k− 1 do

8 i← i + 1;

9 ui ← INVERSESAMPLE fS(xi, −ωi−1, ωi);

10 return u0u1 . . . uk−1;

gorithm 1 in the same order. Because of the use of local importance sampling, we
only have to invert the individual SAMPLE functions and can build the inverse ran-
dom walk from these building blocks. We give a description of the resulting method
in Algorithm 2.

The sample functions appearing in Algorithm 1 are usually constructed from a com-
bination of two sampling primitives. We will review these sample methods in detail
along with their inverses in the following sections.

5.1.1 The Inversion Method

The majority of sampling methods encountered in graphics are derived using the in-
version method, which is a simple recipe for deriving an importance sampling scheme

46

5.1 Inverse Random Walks

for analytic functions. Given a 1D importance function f that we wish to sample, the
inversion method proceeds as follows:

1. Compute the desired probability density p by normalizing f over the input do-
main

p(x) =
f (x)∫

f (x′)dx′

2. Compute the CDF P as a definite integral of p

P(x) =
∫ x

−∞
p(x′)dx′

3. Compute the inverse P−1 of the CDF

If P−1 exists, then for a random variable ξ uniformly distributed in [0, 1), P−1(ξ) is
distributed with probability density proportional to f . As long as the antiderivative of
f is integrable and invertible, we will always be able to derive an analytic sampling
scheme, making the inversion method a powerful tool.

A very similar scheme can be applied to importance sample multidimensional impor-
tance functions: First, the importance function is normalized to arrive at a joint PDF.
This PDF is then marginalized to produce one-dimensional marginal and one or more
conditional densities. The inversion method can then be applied to each of those 1D
densities individually to arrive at a joint importance sampling method.

We can see that in order to arrive at the inverse CDF P−1 to be used for importance
sampling, we first have to compute the CDF P. This is precisely the inverse sam-
pling method that we are looking for! In other words, for many importance sampling
schemes used in graphics, the inverse sampling function that we are after exists and
has already been derived. If an importance sampling scheme is of the form x = P−1(ξ),
then we can easily compute the random number that produced a sample by comput-
ing ξ = P(x). Even if P(x) is not given, it can be readily derived by inverting P−1(u),
which is an invertible function by construction.

5.1.2 Discrete Sampling

Discrete sampling methods, which convert a continuous random number into a dis-
crete decision, are not unusual in graphics. For example, consider the following func-

47

5 Inverse Path Mappings

tion that importance samples the BSDF of a smooth dielectric surface:

SAMPLE(ωi, u) =

reflect(ωi), if u < Fr(ωi)

refract(ωi), otherwise,
(5.1)

where Fr is the Fresnel reflection coefficient.

Here, we transformed the input random number into a binary decision on whether
to reflect or to refract. Unfortunately, such a function is not bijective – given only the
sampled direction, it is impossible to retrieve the exact random number that produced
it, since there is an entire interval of numbers mapping to the same decision.

For our purposes of constructing perturbation strategies for MLT, we fortunately do
not need the exact inverse (which may not be well-defined), and allow the inverse
random walk some freedom in the numbers it returns. Most importantly, we require
that the result of an inverse random walk for a path x̄ = x0x1 . . . xk results in the same
path when used in a forward random walk, i.e.

x̄ = RANDOMWALK(INVERSERANDOMWALK(x̄), k) . (5.2)

Here and in the following, the same discussion applies for both direct and adjoint
random walks, and we omit the adjoint parameter for brevity.

Unfortunately, we cannot resolve ambiguities due to non-bijectivity in a deterministic
manner. For symmetry reasons, we require that the values returned by the inverse ran-
dom walk for a path x̄ are distributed with the same density as the numbers with which
x̄ was sampled. Let U be a random variable in U , and assume x̄ = x0x1 . . . xk was sam-
pled with x̄ = RANDOMWALK(U, k). Then the result of INVERSERANDOMWALK(x̄)
should be a random variable distributed with

Pr{INVERSERANDOMWALK(x̄)=u} = Pr{U=u | RANDOMWALK(u, k)=x̄} . (5.3)

For our purposes, it is enough to assume that U is distributed uniformly in U .

It’s useful to look at a few examples to illustrate the intuition behind this condition. If
there is only one possible state u that could have produced a path x̄, then
Pr{INVERSERANDOMWALK(x̄)=u} reduces to a delta function, and
INVERSERANDOMWALK(x̄) simply always returns u. If there is a contiguous region
A ⊂ U of random numbers that could produce the same path, then the return value
of INVERSERANDOMWALK(x̄) is uniformly distributed within that region. If there are
multiple contiguous regions A1, . . . , AN ⊂ U that map to the same path, then the return
value of INVERSERANDOMWALK(x̄) is uniformly distributed within each region, and
Pr{INVERSERANDOMWALK(x̄) ∈ Ai} is proportional to the size of the region Ai.

48

5.1 Inverse Random Walks

This leads to a straightforward inversion scheme for discrete decisions. For the smooth
dielectric BSDF from the earlier example, its inverse sample function is simply

INVERSESAMPLE(ωi, ωo) =

ξFr(ωi), if ωo = reflect(ωi)

Fr(ωi) + ξ(1− Fr(ωi)), otherwise,
(5.4)

where ξ is a random variable uniformly distributed in [0, 1). That is, we simply uni-
formly distribute the returned result within the interval of random numbers that pro-
duce the same decision. More generally, for a discrete decision with N different out-
comes, each chosen with weight wi, a valid sampling scheme is

SAMPLEDISCRETE(u, w1, w2, . . . , wN) = arg min
i
{uW < w1 + w2 + . . . + wi} , (5.5)

with W = ∑N
i=1 wi. Given that the sampled decision was i, a valid inversion scheme

fulfilling our requirements is

INVERTDISCRETE(i, w1, w2, . . . , wN) = w1 + w2 + . . . + wi−1 + ξ wi , (5.6)

where ξ is the same as before. Similarly to before, we simply uniformly distribute the
returned result within the interval of random numbers that map to the same decision.

Finally, we might run into the case where multiple outcomes i1, i2, . . . , iL of the discrete
decision can lead to the same path (e.g. layered materials). This is precisely the case
discussed previously, in which multiple regions Ai map to the same decision. This
means we must first select a region with weight proportional to its size, i.e.

j = SAMPLEDISCRETE(ξ1, wi1 , wi2 , . . . , wiL) . (5.7)

Then we invert as before

INVERTDISCRETE(i1, i2, . . . , iL, w1, w2, . . . , wN) = w1 + w2 + . . . + wj−1 + ξ2 wj . (5.8)

Here, ξ1 and ξ2 are two random variables uniformly distributed in [0, 1).

5.1.3 Discussion

Maybe surprisingly, the combination of discrete mappings and the inversion method
makes up nearly all importance sampling methods encountered in computer graphics.
For example, importance sampling a position on an emitter involves discretely pick-
ing an emitter surface and then uniformly sampling its area; importance sampling a

49

5 Inverse Path Mappings

layered material such as the Phong shading model [Pho75] involves sampling a dis-
crete BSDF index and then sampling the selected BSDF; importance sampling a texture
involves discretely selecting a texel and uniformly sampling its area, and so forth. Be-
ing able to robustly invert these two sampling methods allows us to invert nearly any
sampled path back to random numbers.

However, there are a few exceptions to this rule. For some functions, such as the
Normal distribution, specialized sampling schemes (e.g. Box-Muller [BM58]) are com-
monly employed that have not been derived using the inversion method. If no infor-
mation is lost during the sampling process, these sampling schemes can usually be
inverted, but it depends on the method.

The rejection method is an alternative sampling recipe for continuous functions that
does not require the function to have an invertible antiderivative and is sometimes
used for difficult sampling distributions, e.g. in the form of Woodcock tracking [WMHTC65]
for heterogeneous participating media. Inverting samples produced by the rejection
method is a practically impossible task, and path inversions will not be possible in
these cases.

It is also important to realize that the space of paths x̄ has more degrees of freedom
than the space of random numbers u, and that there are classes of paths that cannot be
produced by any random walk. Therefore, it is important to engineer inverse random
walks in such a way that they are allowed to fail, and that the algorithms built around
such functions can handle a path inversion failure, even if just due to limited numerical
precision.

5.1.4 The Inverse Path Sample Function

In this chapter, we are primarily interested in paths generated by bidirectional path
tracing, and we now have all the tools available to write down the corresponding path
sample function and its inverse. The bidirectional path sample function will be de-
noted as Sk,i(u), where k is the path length and i specifies which sampling technique
was used to generate the path. If the path length k is clear from the context, we will
drop it as a subscript for brevity and only write down Si(u).

Let s = i and t = k + 1− i. The path sample function is then

Sk,i(u0u1 . . . uk) = y0y1 . . . ys−1zt−1 . . . z1z0 , (5.9)

50

5.2 Robust Transitions between Sampling Techniques

where

y0y1 . . . ys−1 = RANDOMWALK(u0u1 . . . us−1, s− 1, false) (5.10)

z0z1 . . . zt−1 = RANDOMWALK(usus+1 . . . uk, t− 1, true) . (5.11)

Its inverse is given by

S−1
k,i (x0x1 . . . xk) = u0u1 . . . uk , (5.12)

where

u0u1 . . . us−1 = INVERSERANDOMWALK(x0x1 . . . xs−1) (5.13)

usus+1 . . . uk = INVERSERANDOMWALK(xkxk−1 . . . xs) . (5.14)

5.2 Robust Transitions between Sampling Techniques

Multiplexed MLT is a light transport algorithm that exposes the use of different sam-
pling techniques to the Markov chain. It does so by running a Markov chain in the
extended state space (t, u) which specifies both the position in primary sample space
and the mapping that should be used to turn it into a path, and samples the target dis-
tribution ŵt(u)Ĉ∗t (u). Because the MIS weight ŵt(u) is included in the target distribu-
tion, inappropriate sampling techniques for a given path receive a lower contribution
and the MCMC sampler will automatically try to move away from such states.

However, the use of different mappings from primary sample space to paths can make
it difficult for the Markov chain to move from one sampling technique to another. We
can illustrate this problem with a hypothetical TECHNIQUEPERTURBATION that keeps
the random number vector fixed and only attempts to transition to a different sampling
technique. Suppose that the Markov chain for paths of length k is in the state (i, u), and
the perturbation proposes a new state (j, u), where j was chosen uniformly random
from 0, . . . , k + 1. The corresponding acceptance probability is

r((i, u)→ (j, u)) =
ŵj(u)Ĉ∗j (u)T(j→ i)

ŵi(u)Ĉ∗i (u)T(i→ j)
. (5.15)

Because the proposal distributions are symmetric in this case, this simplifies to

r((i, u)→ (j, u)) =
ŵj(u)Ĉ∗j (u)

ŵi(u)Ĉ∗i (u)
. (5.16)

51

5 Inverse Path Mappings

(i, u)

Si(u)

x̄

(j, u)

ȳ

Sj(u)

(a) Current State (b) Proposed State (MMLT)

Figure 5.1: Illustration of the current state of a Markov chain (a) and a proposal path (red)

generated using TECHNIQUEPERTURBATION (b). In MMLT style perturbations, the

technique index is changed without much consideration for the position in primary

sample space, leading to a completely different path.

Since we only changed the sampling technique and not u, we would hope the accep-
tance probability to only depend on the ratio of MIS weights, i.e. on how well the
proposed technique samples the current path compared to the current sampling tech-
nique. However, this is not what is actually happening. This becomes clearer when
we replace the target distribution in primary sample space by its counterpart in path
space:

r((i, u)→ (j, u)) =
wj(Sj(u))C∗(Sj(u))
wi(Si(u))C∗(Si(u))

. (5.17)

Even though the position in primary sample space is not changed, the proposed state
uses a different mapping than the current state to transform that position into a light
path. In general, Si(u) 6= Sj(u), and it is likely that the proposed path (and therefore
its contribution) is very different from the current path (Figure 5.1). Such large changes
are unlikely to be accepted, and the ability of the Markov chain to transition between
different sampling techniques is greatly impeded.

52

5.2 Robust Transitions between Sampling Techniques

(j, v)

ȳ

Sj(v)

(i, u)

Si(u)

x̄

(a) Current State (a) Proposed State (Ours)

S−1
j (Si(u))

Figure 5.2: Illustration of the current state of a Markov chain (a) and a proposal path (red) gen-

erated using our path-invariant technique perturbation (b). When changing sam-

pling techniques, our proposed perturbation simultaneously jumps to a different

point in primary sample space, such that the sampled transport path remains the

same.

5.2.1 A Path-Invariant Technique Perturbation

What we would actually like to do during such a perturbation is to keep the current
path fixed while we change the sampling strategy. In other words, we need to find
a new point v in primary sample space such that Sj(v) = Si(u). Fortunately, this is
easily accomplished if we have access to the inverse sampling technique S−1

j : In that
case, we can simply write the new point in primary sample space as v = S−1

j (Si(u)).

In Section 5.1.4, we described how such an inverse can be constructed, and having
access to S−1

j allows us to build a viable perturbation for changing sampling techniques
that resolves some of the shortcomings of MMLT (Figure 5.2). It proceeds as follows:

1. Pick a new sampling strategy j to transition to

2. Compute the new position in primary sample space, v = S−1
j (Si(u))

53

5 Inverse Path Mappings

3. Accept the proposal state (j, v) with probability r((i, u)→ (j, v))

The acceptance ratio is somewhat unusual compared to other perturbations in primary
sample space. Because we fix the position of the chain in path space and no new path is
sampled, the PDF of the path sampling strategy vanishes in the acceptance ratio. The
remaining terms are

r((i, u)→ (j, v)) =
wj(x̄) f (x̄)T(j→ i)
wi(x̄) f (x̄)T(i→ j)

. (5.18)

In most cases, the path contribution f in path space will be the same for both sampling
techniques and cancels out1. The remaining acceptance ratio only depends on the MIS
weights and the proposal distribution, which was our original intent.

Another interesting aspect of this perturbation is that the state space that is actually
changed is discrete, and the acceptance ratio can only take on one of a finite number
of states. What’s more is that all of the terms in the acceptance ratio are known before
generating the proposal. Therefore, we can carefully construct the proposal distribution
so that it cancels with the remaining terms in the acceptance ratio. Consider

T(i→ j) = wj(x̄) . (5.19)

Notably, this proposal distribution does not depend on the current state i and simply
importance samples the MIS weights. Inserting this into the acceptance ratio yields

r((i, u)→ (j, v)) =
wj(x̄) f (x̄)T(j→ i)
wi(x̄) f (x̄)T(i→ j)

=
wj(x̄)wi(x̄)
wi(x̄)wj(x̄)

= 1 . (5.20)

Assembling all of these parts yields our proposed path-invariant technique perturba-
tion, which proceeds as follows:

1. Choose a proposal technique j with probability wj(Si(u))

2. Compute the proposal state y = (j, S−1
j (Si(u)))

3. Accept y

An interesting aspect of this perturbation is that it will never change the current light
path; in other words, whenever this perturbation is employed, the Markov Chain stays
at the same pixel. This is unfortunate, since this forces us to balance two conflicting
goals: On the one hand, we want the Markov Chain to switch sampling techniques as
often as possible in order to explore the state space, and we should use the technique

1This is not always the case due to non-symmetric scattering. We refer the reader to Veach [Vea96] for
details.

54

5.2 Robust Transitions between Sampling Techniques

perturbation frequently; on the other hand, we do not want the Markov Chain to get
stuck on the same light path for many states, so we should not use this perturbation
very often.

To obtain a workable algorithm, we therefore combine the technique perturbation with
small steps. Whenever MMLT would do a small step, we first employ a technique per-
turbation as described above (which is always accepted), and then perturb the newly
obtained random number vector to generate a proposal state (which is accepted with
the standard MMLT acceptance probability for small steps). This ensures that the
Markov Chain perturbs the sampling technique as often as possible while making sure
the light path is also perturbed often.

Note that the technique perturbation has non-zero probability of choosing the current
sampling technique again. Because it simply importance samples the MIS weights, we
are in fact very likely to retain the current sampling technique if it is among the best
techniques of the current path. This means that there is no harm in performing tech-
nique perturbations often, since they don’t necessarily force us to move to a different
sampling technique if the current technique is already performing well.

We evaluate the performance of this perturbation in Chapter 6 in more detail.

5.2.2 Implementation Details

Efficient Computation of all MIS Weights In order to importance sample the pro-
posal technique j, we are required to compute the MIS weights of all techniques for
the current path, compared to the single MIS weight required for computing the path
contribution. Following Veach [Vea98], we use the following transform to compute the
MIS weight of a single technique:

wi(x̄) =
pi(x̄)

Σj pj(x̄)
=

1
Σj(pj(x̄)/pi(x̄))

. (5.21)

The ratio of probabilities pj/pi can be computed incrementally and is much more nu-
merically well-behaved than the individual probabilities pj, and this is a commonly
used technique in implementations of bidirectional path tracing. It so happens that
these ratios are exactly the weights we need in order to sample j. Consider the unnor-
malized discrete distribution

b̂s = ps(x̄)/pi(x̄) . (5.22)

55

5 Inverse Path Mappings

The corresponding probability mass function (PMF) is

bs =
ps(x̄)/pi(x̄))

Σj(pj(x̄)/pi(x̄)
(5.23)

=
ps(x̄)

Σj pj(x̄)
(5.24)

= ws(x̄) . (5.25)

In other words, we can avoid an expensive computation of all MIS weights and simply
sample j with weight pj(x̄)/pi(x̄), which is equivalent to sampling j with probability
wj(x̄) regardless of i. These weights are already being computed by most implemen-
tations of bidirectional path tracing and make sampling j no more expensive than a
single MIS weight computation (as opposed to k + 2 MIS weight computations).

Optimized Path Inversion At the core of the technique perturbation is the inverse
bidirectional sample function, S−1

j (x̄), which is written in terms of two invocations of
an inverse random walk. In this form, a single technique change requires inverting
the entirety of the current path back to primary sample space, which is an expensive
operation for long paths. We can optimize this operation by reusing some of the cur-
rent state, u. We observe that during a technique change, one of the subpaths of the
proposal state is truncated compared to the current state, while the other subpath is ex-
tended. During this process, |j− i| vertices are removed from one subpath and added
to the other, which on average is much smaller than k + 1, the total number of vertices
on the path.

Since we know which elements of the current state were used to sample which subpath,
we can simply copy the elements of u corresponding to the vertices of the truncated
subpath, since these are left unchanged. This saves one invocation of INVERSERAN-
DOMWALK.

Usually, we are also able to implement inverse random walks in a way that allows us
to invert only part of a path. In that case, we can also reuse all of the elements of u that
correspond to the extended subpath, and merely have to append the random numbers
corresponding to the vertices that were added to the extended subpath. During a tech-
nique change, this allows us to perform a full path inversion by processing only |j− i|
vertices rather than k + 1.

56

5.3 Controlled Small Steps

u0

v0

ω

ω′

ω

ω′

(a) Geometric discontinuities (b) Material changes

Figure 5.3: Small steps in primary sample space (left) can lead to large changes to the path due

to geometric discontinuities (a) or material changes (b)

5.3 Controlled Small Steps

The primary tool for path exploration in PSSMLT and MMLT is the small step pertur-
bation, which performs a small change of the current position in primary sample space
to obtain a proposal state. The intuition behind this strategy is that light transport is
spatially coherent, and that nearby paths tend to have similar contribution to the im-
age. In the primary sample space view, the Markov chain does not have direct access
to the light path; instead, it is assumed that spatial coherence translates to primary
sample space as well, and that similar points in primary sample space have similar
contributions to the image.

We’ve already seen two situations where this was not the case: Section 4.2 explored the
problem of discrete choices, where small changes in primary sample space can lead to
a large change in the light path, and Section 5.2 showed that similar caveats apply
when changing sampling strategies in MMLT. In this section, we show how geometric
discontinuities and material changes can translate small steps in primary sample space
to large steps in path space and propose a new perturbation based on inverse path
sampling that can remedy this problem.

5.3.1 Discontinuities in Primary Sample Space

To illustrate the problems caused by discontinuities, we consider a hypothetical pro-
posal generator, ROOTPERTURBATION. This method only perturbs the random num-

57

5 Inverse Path Mappings

bers associated with the root vertex, i.e. the first vertex on a subpath. We expect such a
small change in primary sample space to translate to a very small change to the light
path – the proposed light path may be slightly offset compared to the current light
path, but overall we expect its structure to be largely the same.

Geometric Discontinuities Figure 5.3 (a) illustrates that this is not the case when the
proposed light path steps over a geometric edge, causing a vertex to land on a surface
with completely different surface normal. Even though the random numbers associ-
ated with this vertex were not changed, they are now interpreted differently. The BSDF
associated with the surface will sample an outgoing direction in a local coordinate
frame aligned with the surface normal, and a large change in the surface normal leads
to a large change in the sampled outgoing direction even when the random numbers
are left unchanged.

Material Changes Figure 5.3 (b) illustrates how similar effects can occur if a vertex
on the proposed path lands on a surface with a different material. Even though the
random numbers associated with this vertex were not changed, the change in material
causes them to be interpreted differently, leading to a large change in the sampled
outgoing direction. This is because different BSDFs generally use different importance
sampling strategies, i.e. different mappings from primary sample space to directions.

Small step perturbations have trouble stepping over these discontinuities and get “stuck”
in a local region of primary sample space. PSSMLT and MMLT rely on large step mu-
tations to jump out of these regions, but these have a much lower average acceptance
ratio than small steps, causing the chain to spend more time than necessary in a small
part of primary sample space.

5.3.2 Crossing Discontinuities with Path Inversions

Perturbing only the random numbers associated with the root vertex is evidently not
sufficient to avoid large changes to the path. In the ideal case, the edges on the proposal
path ȳ proposed by ROOTPERTURBATION are parallel to the current path x̄; that is

yi+1 − yi

||yi+1 − yi||
=

xi+1 − xi

||xi+1 − xi||
, j = 1, . . . , k− 1 . (5.26)

Maybe surprisingly, a proposal path defined this way is fully determined by the cur-
rent path and the location of the proposed root vertex – no sampling of directions other

58

5.3 Controlled Small Steps

Algorithm 3: ROOTPERTURBATION(u, x0x1 . . . xk, adjoint)

1 v0 ← PERTURB(u0);

2 if adjoint then y0, ω0 ← SAMPLE We(v0) ;

3 ;

4 else y0, ω0 ← SAMPLE Le(v0) ;

5 ;

6 i← 0;

7 while ISFINITE(yi) ∧ i < k do

8 i← i + 1;

9 yi ← xM(yi−1, ωi−1);

10 ωi ← xi+1−xi
||xi+1−xi || ;

11 return INVERSERANDOMWALK(y0y1 . . . yi, adjoint);

than at the root vertex is required. If the Markov chain operated purely in path space,
then the implementation of such a perturbation is straightforward.

Unfortunately, in the primary sample space perspective, such direct operations on
paths are normally not available to us. The state of the Markov chain resides in a differ-
ent space, and any change to the path would have to be transformed into an equivalent
change to the random number vector.

However, the inverse path sample function promises to do just that! Since it is able
to transform light paths into points in primary sample space, any change we make to
the path can be turned into an equivalent change to the random number vector. This
allows us to create an implementation of ROOTPERTURBATION, given in Algorithm 3.
It takes the current state u as well as the corresponding light path x̄ and returns a
proposal state in primary sample space. It does so by first perturbing the random
numbers associated with the first vertex (e.g. using a PSSMLT small step) and retrieves
the position of the perturbed root vertex. After that, it traces a proposal path ȳ, copying
the outgoing directions from x̄ at each step. Finally, the proposal state is computed
from the proposal path using an inverse random walk.

Such a perturbation allows us to trace an “offset path” in a way that is robust against
discontinuities caused by material changes or geometric edges. In general, we do not
expect ROOTPERTURBATION to be a very useful strategy when employed in a PSSMLT
context, since the changes it proposes are much too small to properly explore the state
space. However, we can reuse some of its ideas to construct an alternative small step
perturbation that is more robust to discontinuities.

59

5 Inverse Path Mappings

INVERT

PERTURB

u

u′ v

ωi

ω′i

INVERT

PERTURB
ω′i

(a) Primary Sample Space (b) Path Space

Figure 5.4: An illustration of our proposed small steps in primary sample space (a) and path

space (b). The proposal path (dotted red) lands on a surface with a different mate-

rial than the current path (dotted black). We first jump to an intermediate point u′

(green) in primary sample space that reproduces the same outgoing direction at the

vertex on the proposed path (green arrow) as on the current path (black arrow). We

then perturb this point to obtain the proposal state v (red). For illustration purposes

we use a relatively large perturbation here; in practice, the perturbation would be

much smaller.

5.3.3 An Alternative Small Step Perturbation

When we perform a small step in PSSMLT, some of the change in the outgoing direction
at each proposal vertex will be due to the random numbers being slightly perturbed,
and some of the change will be due to the vertices landing on surfaces with different
orientation or material. We wish to remove the change introduced by landing on a dif-
ferent surface, since the magnitude of this change is largely uncontrollable and might
make the mutation strategy less robust to complex scenes.

Given a vertex on the proposal path yi, we know what the outgoing direction at this
vertex should be if its random numbers were not changed: It is (xi+1− xi)/||xi+1− xi||,
which is what we used in ROOTPERTURBATION. However, during a small step, we also
want to perturb this direction slightly, using the same tools as PSSMLT. In order to do
this, we first need to compute what the position in primary sample space would need

60

5.3 Controlled Small Steps

to be to produce the unperturbed direction:

ω′i =
xi+1 − xi

||xi+1 − xi||
(5.27)

u′i = INVERSESAMPLE fS(yi, −ωi−1, ω′i) . (5.28)

Computing u′i allows us to reassume the primary sample space perspective and per-
form the actual perturbation of the direction using the random numbers only:

vi = PERTURB(u′i) (5.29)

ωi = SAMPLE fS(yi,−ωi−1, vi) . (5.30)

Repeating this invert-perturb-sample pattern along the entire path allows us to imple-
ment an improved version of ROOTPERTURBATION that can perturb all vertices while
retaining the robustness of ROOTPERTURBATION. We illustrate this process in Fig-
ure 5.4.

Computing the correct acceptance probability for such a perturbation is slightly more
difficult than for other proposals in PSSMLT, since the proposal distributions are no
longer symmetric. Fortunately, the actual perturbation is still performed in primary
sample space, and inherits much of the simplicity of PSSMLT style perturbations.

The proposal distribution of such a perturbation can be written as the product of pro-
posal distributions at each vertex:

T(u→ v) = ∏
i

Ti(ui → vi) . (5.31)

We denote the PSSMLT small step proposal distribution as TPSSMLT. This directly al-
lows us to write down the proposal distribution of the first vertex

T0(u0 → v0) = TPSSMLT(u0 → v0) . (5.32)

At the remaining vertices, we first perform a jump from ui to u′i via a call to the inverse
sample function. We then perturb u′i to obtain the final proposal state, vi. The jump to
u′i is fully deterministic, and the proposal distribution is simply

Ti(ui → vi) = TPSSMLT(u′i → vi) (5.33)

= TPSSMLT(S−1
yi

(Sxi(ui))→ vi) . (5.34)

Here, Sxi and S−1
yi

are shorthand for forward and inverse BSDF sampling at the vertices
xi and yi, respectively.

61

5 Inverse Path Mappings

Inserting this proposal density into the acceptance probability yields

r(u→ v) =
f̂ ∗(v)T(v→ u)
f̂ ∗(u)T(u→ v)

(5.35)

=
f̂ ∗(v)TPSSMLT(v0 → u0)∏i=1 TPSSMLT(v′i → ui)

f̂ ∗(u)TPSSMLT(u0 → v0)∏i=1 TPSSMLT(u′i → vi)
(5.36)

=
f̂ ∗(v)TPSSMLT(v0 → u0)∏i=1 TPSSMLT(S−1

xi
(Syi(vi))→ ui)

f̂ ∗(u)TPSSMLT(u0 → v0)∏i=1 TPSSMLT(S−1
yi (Sxi(ui))→ vi)

. (5.37)

Note that even if the PSSMLT proposal distribution TPSSMLT is symmetric, the distri-
bution of the proposed perturbation is not. This is because the perturbation does not
transition from ui to vi in primary sample space like small steps do, but from an in-
termediate point u′i to vi. Generally, vi − u′i is not equal to v′i − ui, so even a radially
symmetric proposal distribution such as a Gaussian would not cancel when inserted
into the acceptance probability above.

In order to compute the correct acceptance probability, we need to keep track of four
points in primary sample space: ui, the current state; u′i, the state corresponding to the
current direction at the proposed vertex; vi, the state corresponding to the proposed
direction at the proposed vertex; and v′i, the state corresponding to the proposed direc-
tion at the current vertex. All of these points can be computed as the path is sampled.

Algorithm 4 gives a pseudo-code implementation of the proposed perturbation. It
takes the current state, i.e. the position in primary sample space and the resulting path,
and returns the proposed position in primary sample space and the evaluated proposal
distributions required to compute the acceptance probability.

The algorithm first computes a perturbed root vertex, sampled from either camera or
emitter, depending on the transport direction. It then proceeds to apply the invert-
perturb-sample pattern along the entire path, tracking the four points in primary sam-
ple space required to compute the acceptance probability along the way. Finally, the
proposal distributions are evaluated and the proposed primary sample space position
is returned.

Note that Algorithm 4 can only handle unidirectionally sampled paths. For bidirec-
tionally sampled paths, we simply need to run SAMPLEPERTURBEDPATH twice, once
for each subpath. The evaluated proposal distributions for both subpaths are then
simply multiplied to arrive at the factors required for computing the acceptance prob-
ability.

62

5.3 Controlled Small Steps

Algorithm 4: SAMPLEPERTURBEDPATH(adjoint, u0u1 . . . uk, x0x1 . . . xk)

1 v0 ← PERTURB(u0);

2 if adjoint then y0, ω0 ← SAMPLE We(v0) ;

3 ;

4 else y0, ω0 ← SAMPLE Le(v0) ;

5 ;

6 i← 0;

7 while ISFINITE(yi) ∧ i < k do

8 i← i + 1;

9 yi ← xM(yi−1, ωi−1);

10 ω′i ←
xi+1−xi
||xi+1−xi || ;

11 u′i ← INVERSESAMPLE fS(yi,−ωi−1, ω′i);

12 vi ← PERTURB(u′i);

13 ωi ← SAMPLE fS(yi,−ωi, vi);

14 v′i ← INVERSESAMPLE fS(xi,−ω′i−1, ωi);

15 T(u→ v)← TPSSMLT(u0 → v0)∏l=1 TPSSMLT(u′l → vl);

16 T(v→ u)← TPSSMLT(v0 → u0)∏l=1 TPSSMLT(v′l → ul);

17 return {v0v1 . . . , vi, T(u→ v), T(v→ u)};

Analysis

In order to evaluate whether such a perturbation is beneficial, we introduce the notion
of the average angle change between two transport paths. Consider a subpath ȳ =

y0y1 . . . ys−1 with s vertices, and a perturbed version of that subpath ȳ′ = y′0y′1 . . . y′s−1.
We measure the angle change between these subpaths as

∆α(ȳ, ȳ′) =
s−2

∑
i=0

cos−1

(
yi+1 − yi

||yi+1 − yi||
· y′i+1 − y′i
||y′i+1 − y′i||

)
. (5.38)

This is simply the sum of the angle differences between corresponding edges on the
two subpaths. If s < 2, we set ∆α(ȳ, ȳ′) = 0.

We wish to compute a similar metric for full transport paths x̄ and x̄′ of equal length.
If both paths were generated by connecting two subpaths ȳ, z̄ and ȳ′, z̄′ respectively,
then we measure the average angle change between x̄ and x̄′ as

∆ψ(x̄, x̄′) =
∆α(ȳ, ȳ′) + ∆α(z̄, z̄′)

max(0, s− 2) + max(0, t− 2)
. (5.39)

This function is simply the sum of angle changes on camera- and emitter subpath,
divided by the total number of edges considered. Notably, the connecting edge is not

63

5 Inverse Path Mappings

(a) MMLT small steps (b) Our small steps

Figure 5.5: These images show the average angle change between the current path and the pro-

posal path, generated either by MMLT small steps (a) or our alternative small steps

(b) in a jewelry scene with glossy surfaces and geometric discontinuities. Note how

MMLT small steps introduce large changes to the path near geometric discontinu-

ities, such as the edges of the jewelry or between faces of the curved backdrop in the

top right. This manifests as white halos around edges. Our alternative small steps

are much less sensitive to such discontinuities and the image recording the average

angle change is considerably more uniform.

taken into account, since it is not importance sampled by either subpath. It should be
mentioned that this function may be ill-defined for paths of length 1, and we disregard
such paths for our analysis.

We now utilize this function in order to show how MMLT small steps and our alter-
native small steps differ in the proposals they generate. Whenever a small step is per-
formed, we compute the average angle change between the current and the proposal
path, and splat the computed value to the image plane. If we run the Markov chain for
a long time, this will converge to an image where each pixel shows the average angle
change introduced by proposals emanating from that pixel.

We show the resulting images for a jewelry scene with glossy surfaces and moderately
complex geometry in Figure 5.5, rendered with both MMLT small steps and our alter-
native small steps. Both images are at equal exposure, where a black pixel corresponds
to no change and a completely white pixel corresponds to an average angle change of
half a radian or more.

As expected, MMLT small steps introduce larger changes to the path near geometric
discontinuities, which manifests as bright halos around the edges of the jewelry. This
effect is also visible in the upper right corner, where it is caused by changes in the sur-
face normal between faces of the curved backdrop. On the other hand, our alternative

64

5.3 Controlled Small Steps

(a) MMLT small steps (b) Our small steps

Figure 5.6: The same jewelry scene as depicted in Figure 5.5, this time showing the rendered

images produced by MMLT small steps (a) and our proposed small steps (b). The

noise distribution is worse and less uniform when our small steps are used, visible

e.g. on the top of the left ring or in front of the gold ring in the back.

small steps are relatively robust against these discontinuities, and there are no bright
halos around the edges of the jewelry or between faces of the backdrop.

Unfortunately, the actual rendered images tell a different story. To demonstrate the
noise behaviour of the two different small steps, we lowered the probability of using
a large step to 1%, which forces the Markov Chain to explore path space using small
steps most of the time. Figure 5.6 shows the resulting images, rendered with MMLT
small steps and our small steps. It appears that by enforcing more controlled changes
to the path, our alternative small steps also change the way the Markov Chain explores
path space. For example, the noise on top of the left ring in Figure 5.6 is distributed
in streaks when our method is used, as the Markov Chain prefers to slide along the
curve of the ring and penalizes orthogonal movement. Similarly, glossy caustics, such
as on the inside of the left ring or in front of the gold ring in the back, are explored
much less uniformly when our small steps are used, manifesting as splotches of noise.
These artifacts disappear over time, but much more slowly than comparable artifacts
of MMLT small steps.

Therefore, we do not expect our alternative small steps to be useful as a replacement
for MMLT small steps. However, they serve as an example of how perturbations oper-
ating directly on paths can be reconciled with the primary sample space perspective,
and there may be other such perturbations that could benefit primary sample space
methods.

65

CHAPTER6
Results

In this section, we will evaluate our proposed Path-Invariant Technique Perturba-
tion (PITP), introduced in Section 5.2, in more detail. We implemented our proposed
technique and all relevant prior work as additional integrators in the Tungsten ren-
derer [Bit14]. In the following, we compare Multiplexed Metropolis Light Transport
augmented with PITP to standard Multiplexed Metropolis Light Transport (MMLT)
and Primary Sample Space Metropolis Light Transport (PSSMLT), employed on top of
a bidirectional path tracer using the balance heuristic.

We evaluate the benefits of our approach compared to the baseline methods in three in-
terior scenes with difficult lighting: LIVINGROOM, a living room lit by a high-frequency
environment map visible through a window outside the camera viewport; STAIRCASE,
a staircase lit through a skylight by an environment map; and AJAR, a room lit by a
light source in an adjacent room, reachable only through the gap of slightly ajar door.
All scenes feature glossy surfaces and complex visibility.

Both LIVINGROOM and STAIRCASE were generously made available by Wayne (Wig42);
they were originally titled The Modern Living Room and The Wooden Staircase and are
both available on http://blendswap.com. AJAR is modeled after a scene by Eric Veach
and Toshiya Hachisuka.

We show comparisons of the resulting images in Figure 6.2, 6.3 and 6.4. We show a
reference image, obtained with bidirectional path tracing, and two insets taken from
images rendered with PSSMLT, MMLT and our proposed method at equal render time.
We used one million samples, generated with a bidirectional path tracer, to estimate the
normalization factor.

To allow for an easier comparison, resolution-aware proposals, multiple correlated-
try large steps and constrained discrete choices were disabled for our method. For all
methods, we set the probability of using a large step to plarge = 0.1; a small step is

67

http://blendswap.com

6 Results

performed otherwise. When PITP is used, the algorithm will additionally select a new
sampling technique before performing a small step.

All of the results were rendered in the cloud using four Google Compute Engine
n1-highcpu-16 instances, which at that time utilized Intel Xeon E5 processors and of-
fered a total of 16 virtual cores each. The reference images were rendered with bidi-
rectional path tracing at 40’000 paths per pixel. In order to exploit parallelism, our im-
plementation launches 16 threads, each running a separate Markov chain. All Markov
chains contribute to the same image using lock-free splatting operations. Since MCMC
methods perform better on indirect lighting, we exclude direct lighting from the im-
ages to allow for a better comparison.

For completeness, we also show full-resolution images of all three scenes rendered
with each method in Figure 6.5, 6.6 and 6.7.

In all three scenes, PSSMLT performs the worst out of the methods shown. This is
because it considers all possible connections between emitter- and camera subpath,
which is more computationally expensive than the single connection considered by
MMLT. At equal render time, PSSMLT therefore produces fewer samples than MMLT,
leading to a noisier result. MMLT performs much better than PSSMLT, but it has trou-
ble transitioning between different sampling techniques, causing it to become stuck in
local regions of path space. This manifests as “streaky” or “splotchy” artifacts, such as
on the couch in Figure 6.2 (red inset), the floor in Figure 6.3 (red inset), or the golden
teapot in Figure 6.4 (yellow inset). In contrast, PITP can rapidly switch between sam-
pling techniques without suffering high rejection rates, and explores path space more
uniformly than MMLT, resulting in more uniform noise.

To further illustrate the advantage of PITP, we record the average acceptance probabil-
ity of small steps in MMLT and PITP for the AJAR scene and plot it in Figure 6.1. We
separately record the acceptance probabilities of small steps that change the sampling
technique used to generate the path, and those that leave it unchanged. As expected,
small steps in MMLT that change the sampling technique generally cause large changes
to the path, and the resulting proposals are very likely to be rejected. In contrast, PITP
can change sampling techniques without such a penalty, and the acceptance probabil-
ities in PITP are largely unaffected by technique changes.

68

3 4 5 6 7 8 9 10 11
Path length

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

A
v
e
ra

g
e
 A

cc
e
p
ta

n
ce

 P
ro

b
a
b
ili

ty

Multiplexed MLT

No Technique Change

Technique Change

3 4 5 6 7 8 9 10 11
Path length

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

A
v
e
ra

g
e
 A

cc
e
p
ta

n
ce

 P
ro

b
a
b
ili

ty

Ours

No Technique Change

Technique Change

Figure 6.1: Average acceptance probability of small steps for MMLT (left) and PITP (right) in

the AJAR scene, plotted over different path lengths. We differentiate between small

steps that change the sampling technique and those that leave it unchanged. Note

how technique changes in MMLT are very unlikely to be accepted, whereas tech-

nique changes in PITP have little effect on the acceptance probability.

69

6 Results

PSSMLT MMLT Ours Reference

Figure 6.2: Equal-time renders of a living room scene lit by an environment map, visible

through a small window. The combination of dielectric and layered materials and

complex visibility make this scene challenging to render.

70

PS
SM

LT
M

M
LT

O
ur

s
R

ef
er

en
ce

Figure 6.3: Equal-time renders of a staircase, lit by a skylight above the chandelier. Much of

the lighting in this scene is indirect and reflects off of glossy surfaces such as the

wooden floor and staircase.

71

6 Results

PSSMLT MMLT Ours Reference

Figure 6.4: Equal-time renders of an interior room, light by a light source in an adjacent room.

The light can only enter through a slightly ajar door, and light-carrying paths are

difficult to find. Much of the lighting comes from glossy interreflections. Modeled

after a scene by Eric Veach and Toshiya Hachisuka.

72

ReferenceReference OursOurs

PSSMLTPSSMLT MMLTMMLT

Figure 6.5: Full resolution images of the insets from Figure 6.2

73

6 Results

Reference Ours

PSSMLT MMLT

Figure 6.6: Full resolution images of the insets from Figure 6.3

74

ReferenceReference OursOurs

PSSMLTPSSMLT MMLTMMLT

Figure 6.7: Full resolution images of the insets from Figure 6.4

75

CHAPTER7
Conclusion

In this thesis, we took a closer look at mappings from the space of random numbers to
path space and how they relate to MCMC methods operating in primary sample space.

In the first half of the thesis, we began by investigating how the image resolution and
discrete choices on random walks interact suboptimally with the sampling process of
MCMC methods in primary sample space. We proposed simple remedies to these
shortcomings that can be easily integrated with previous work.

We also showed how large steps in Multiplexed Metropolis Light Transport can per-
form suboptimally and proposed an alternative large step mutation that does not suffer
from these issues. Our proposed large step mutation is built on the framework of Mul-
tiple Correlated-Try Metropolis and can leverage multiple proposals in one step, gener-
ated cheaply from correlated bidirectional connections. We showed how our proposed
large step mutation is no longer beneficial when render time is taken into account, but
motivated a hybrid approach that could perform better.

In the second half of the thesis, we introduced the notion of the inverse path sample
function, which can reconstruct the random numbers that generated a light path. We
gave simple recipes for inverting sampling methods commonly used in graphics, and
gave examples of sampling processes that cannot be inverted. We then showed two
applications of such an inverse in the context of Markov Chain Monte Carlo integration
in primary sample space, both targeting shortcomings of previous work.

To motivate our first approach, we showed how Multiplexed Metropolis Light Trans-
port cannot easily transition between sampling techniques, since changes to the tech-
nique index lead to large changes to the light path. We then showed how this problem
can be solved using the inverse path sample function, which allowed us to introduce
a path-invariant technique perturbation that is able keep the light path fixed while
switching sampling techniques. We analysed the performance of this method in detail

77

7 Conclusion

in Chapter 6 and showed how it improves upon previous work in a variety of scenes.

Finally, we also investigated how geometric and material discontinuities interact with
MCMC methods operating in primary sample space. We gave an intuition as to why
such discontinuities can prevent the Markov chain from properly exploring the state
space with small steps, and proposed an alternative small step perturbation that uses
the path sample inverse in order to step over such discontinuities. Our analysis showed
that such an approach succeeds in preventing uncontrolled changes to the light path,
but fails to improve rendering performance.

7.1 Future Work

Chapter 4 demonstrated several uses of random numbers in the path sampling process
that can interact suboptimally with primary sample space MCMC methods. It would
be interesting to investigate whether more such cases exist and whether their effect is
large enough to warrant a solution.

In Section 4.3, we also showed how our proposed multiple correlated-try large steps
are no longer beneficial when render time is taken into account. We suspect that they
still hold an advantage over MMLT large steps for longer paths, and it would be inter-
esting to investigate whether a combination of MMLT large steps for short paths and
our proposed large steps for long paths improves overall rendering performance.

In Chapter 5, we only showed two possible uses of the inverse path sample function,
but we strongly believe that it has other applications as well. These could be in the
form of additional perturbations or mutations for MCMC methods in primary sam-
ple space, in a similar vein to the ones proposed. We showed how our alternative
small step, although more robust to discontinuities, does not improve rendering per-
formance. However, it demonstrates how direct operations on paths can be reconciled
with the primary sample space perspective, and there could be other perturbations that
can make use of such an approach. Finally, the path sample inverse is general enough
that there might be applications in other areas of rendering, and it would be interesting
to explore the implications of having such an inverse mapping available.

78

Bibliography

[AK90] James Arvo and David Kirk. Particle transport and image synthesis. In
Proceedings of the 17th Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’90, pages 63–66, New York, NY, USA, 1990.
ACM.

[Bit14] Benedikt Bitterli. Tungsten renderer, 2014.
https://github.com/tunabrain/tungsten.

[BM58] G. E.P̃. Box and Mervin E. Muller. A note on the generation of random
normal deviates. The Annals of Mathematical Statistics, 29(2):610–611, 06
1958.

[CL07] Radu V. Craiu and Christiane Lemieux. Acceleration of the multiple-try
metropolis algorithm using antithetic and stratified sampling. Statistics
and Computing, 17(2):109–120, 2007.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray
tracing. In Proceedings of the 11th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’84, pages 137–145, New York, NY,
USA, 1984. ACM.

[CTE05] David Cline, Justin Talbot, and Parris Egbert. Energy redistribution path
tracing. ACM Trans. Graph., 24(3):1186–1195, July 2005.

[Deb98] Paul Debevec. Rendering synthetic objects into real scenes: Bridging
traditional and image-based graphics with global illumination and high
dynamic range photography. In Annual Conference Series (Proc. SIG-
GRAPH), pages 189–198, 1998.

[DHM+01] Philip Dutré, Paul Heckbert, Vincent Ma, Fabio Pellacini, Robert
Porschka, Mahesh Ramasubramanian, Cyril Soler, and Greg Ward.
Global illumination compendium, 2001.

[ENSB13] Christian Eisenacher, Gregory Nichols, Andrew Selle, and Brent Burley.
Sorted deferred shading for production path tracing. In Proceedings of the

Bibliography

Eurographics Symposium on Rendering, EGSR ’13, pages 125–132, Aire-la-
Ville, Switzerland, Switzerland, 2013. Eurographics Association.

[ESG06] Manfred Ernst, Marc Stamminger, and Günther Greiner. Filter impor-
tance sampling. In IEEE Symposium on Interactive Ray Tracing 2006, pages
125–132, Sept 2006.

[GKH+13] Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek
Nowrouzezahrai, and Wojciech Jarosz. Joint importance sampling
of low-order volumetric scattering. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 32(6), November 2013.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Ben-
nett Battaile. Modeling the interaction of light between diffuse surfaces.
SIGGRAPH Comput. Graph., 18(3):213–222, January 1984.

[Has70] W.K̃. Hastings. Monte carlo sampling methods using markov chains and
their applications. Biometrika, 57(1):97–109, 1970.

[HH10] Jared Hoberock and John C. Hart. Arbitrary importance functions for
metropolis light transport. In Computer Graphics Forum, pages 1993–2003,
2010.

[HJ11] Toshiya Hachisuka and Henrik Wann Jensen. Robust adaptive photon
tracing using photon path visibility. ACM Trans. Graph., 30(5):114:1–
114:11, October 2011.

[HKD14] Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher.
Multiplexed metropolis light transport. ACM Trans. Graph., pages 100–
100, 2014.

[Ill91] Illumination Engineering Society of North America. IES standard file for-
mat for electronic transfer of photometric data and related information, 1991.

[Jak10] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org.

[Jak13] Wenzel Jakob. Light Transport on Path-Space Manifolds. PhD thesis, Cor-
nell University, August 2013.

[Jar08] Wojciech Jarosz. Efficient Monte Carlo Methods for Light Transport in Scat-
tering Media. PhD thesis, UC San Diego, September 2008.

[Kaj86] James T. Kajiya. The rendering equation. In Proceedings of the 13th Annual

80

Bibliography

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’86, pages 143–150, New York, NY, USA, 1986. ACM.

[KSKAC02] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc
Csonka. A simple and robust mutation strategy for the metropolis light
transport algorithm. In Computer Graphics Forum, pages 531–540, 2002.

[LKA13] Samuli Laine, Tero Karras, and Timo Aila. Megakernels considered
harmful: Wavefront path tracing on gpus. In Proceedings of the 5th High-
Performance Graphics Conference, HPG ’13, pages 137–143, New York, NY,
USA, 2013. ACM.

[LLW00] Jun S. Liu, Faming Liang, and Wing H. Wong. The multiple-try method
and local optimization in metropolis sampling. Journal of the American
Statistical Association, 95(449):121+, March 2000.

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In
Proceedings of 3rd International Conference on Computational Graphics and
Visualization Techniques (COMPUGRAPHICS ’93, pages 145–153, 1993.

[LW96] Eric P. Lafortune and Yves D. Willems. Rendering participating media
with bidirectional path tracing. In Proceedings of the Eurographics Work-
shop on Rendering Techniques ’96, pages 91–100, London, UK, UK, 1996.
Springer-Verlag.

[MRR+53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. Equation of state calculations by
fast computing machines. The Journal of Chemical Physics, 21(6):1087–
1092, 1953.

[NRH+77] F. Nicodemus, J. Richmond, J. Hsia, I. Ginsberg, and T. Limperis. Ge-
ometric considerations and nomenclature for reflectance. Monograph
160, National Bureau of Standards (US), October 1977.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edi-
tion: From Theory To Implementation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2nd edition, 2010.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Com-
mun. ACM, 18(6):311–317, June 1975.

[SIP07] Benjamin Segovia, Jean-Claude Iehl, and Bernard Proche. Coherent
metropolis light transport with multiple-try mutations. Technical report,

81

Bibliography

LIRIS UMR 5205 CNRS/INSA de Lyon/Universit Claude Bernard Lyon
1/Universit Lumire Lyon 2/cole Centrale de Lyon, April 2007.

[Vea96] Eric Veach. Non-symmetric scattering in light transport algorithms. In
Proceedings of the Eurographics Workshop on Rendering Techniques ’96, pages
81–90, London, UK, UK, 1996. Springer-Verlag.

[Vea98] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation.
PhD thesis, Stanford University, Stanford, CA, USA, 1998. AAI9837162.

[VG94] Eric Veach and Leonidas Guibas. Bidirectional estimators for light trans-
port. In Proceedings of Eurographics Rendering Workshop, pages 147–162,
1994.

[VG95] Eric Veach and Leonidas J. Guibas. Optimally combining sampling tech-
niques for monte carlo rendering. In Proceedings of the 22nd Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95,
pages 419–428, New York, NY, USA, 1995. ACM.

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Pro-
ceedings of the 24th Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’97, pages 65–76, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

[Whi80] Turner Whitted. An improved illumination model for shaded display.
Commun. ACM, 23(6):343–349, June 1980.

[WMHTC65] E. Woodcock, T. Murphy, P. Hemmings, and L. T.C̃. Techniques used
in the GEM code for monte carlo neutronics calculations in reactors and
other systems of complex geometry. In Proceedings of the Conference on
Applications of Computing Methods to Reactor Problems, 1965.

[WMLT07] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Tor-
rance. Microfacet models for refraction through rough surfaces. In Pro-
ceedings of the 18th Eurographics Conference on Rendering Techniques, EGSR
’07, pages 195–206, Aire-la-Ville, Switzerland, Switzerland, 2007. Euro-
graphics Association.

82

	List of Figures
	1 Introduction
	1.1 Thesis Overview

	2 Fundamentals of Light Transport
	2.1 The BSDF
	2.2 The Rendering Equation
	2.2.1 Surface Area Formulation

	2.3 The Measurement Equation
	2.3.1 Path Integral Formulation

	3 Solving the Light Transport Problem
	3.1 Monte Carlo Methods
	3.1.1 Variance of the Monte Carlo Estimator

	3.2 Random Walks
	3.3 Path Tracing
	3.3.1 Next Event Estimation
	3.3.2 Multiple Importance Sampling

	3.4 Bidirectional Path Tracing
	3.5 Markov Chain Monte Carlo Methods
	3.6 Metropolis Light Transport
	3.7 Primary Sample Space Metropolis Light Transport
	3.7.1 Rippling Effects

	3.8 Multiplexed Metropolis Light Transport

	4 Annotated Primary Sample Space
	4.1 Resolution-Aware Proposals
	4.2 Constrained Discrete Choices
	4.3 An Alternative Large Step Mutation
	4.3.1 Analysis

	5 Inverse Path Mappings
	5.1 Inverse Random Walks
	5.1.1 The Inversion Method
	5.1.2 Discrete Sampling
	5.1.3 Discussion
	5.1.4 The Inverse Path Sample Function

	5.2 Robust Transitions between Sampling Techniques
	5.2.1 A Path-Invariant Technique Perturbation
	5.2.2 Implementation Details

	5.3 Controlled Small Steps
	5.3.1 Discontinuities in Primary Sample Space
	5.3.2 Crossing Discontinuities with Path Inversions
	5.3.3 An Alternative Small Step Perturbation

	6 Results
	7 Conclusion
	7.1 Future Work

	Bibliography

