
OPTIMIZING QUERY TIME IN A BOUNDING VOLUME HIERARCHY

Benedikt Bitterli, Simon Kallweit

Department of Computer Science
ETH Zürich

Zürich, Switzerland

ABSTRACT
In this paper, we consider the problem of the fast computa-
tion of ray-triangle intersections. We target input sets with
many triangles and many rays, both on the order of bil-
lions. We focus on one particular spatial acceleration struc-
ture, called the Bounding Volume Hierarchy (BVH), and
examine the effects of memory architecture and vectoriza-
tion on performance. We introduce a novel ray reordering
scheme to improve temporal locality on difficult input sets.
Our results have applications in engineering and computer
graphics, especially in physically based rendering, where
ray-triangle intersections pose a computational bottleneck.

1. INTRODUCTION

Many applications in graphics and engineering rely on the
fast computation of intersections of rays with triangles. In
movie production, video effects in particular have great use
for fast triangle intersection, since ray-triangle intersection
usually represents a bottleneck in the generation of realistic
imagery.

For our purposes, a ray is a half-infinite line fully de-
fined by its origin and direction. Intersections of a ray with
a triangle are defined as the points that are part of both the
ray and the triangle. The geometric setup is illustrated in
Figure 1.

Brute force intersection of a ray with all triangles is typ-
ically infeasible, since the number of triangless can easily
exceed hundreds of millions in practice. Instead, hierarchi-
cal spatial data structures are employed to quickly identify
triangles that are likely to intersect a ray. In the context of
spatial data structures, the term query is usually used to refer
to a ray. This paper focuses on minimizing the query time,
that is, the time required to answer a ray query. We assume
that spatial data structures are queried by many rays once
they are built, meaning that expensive preprocessing steps
can be performed on the data structure to optimize query
time.

In this paper, we will focus on one such data structure,
the Bounding Volume Hierarchy (BVH), applied to triangle
meshes in the context of physically based rendering. We

Fig. 1. A ray, a triangle and the intersection point of the ray
with the triangle

will explore different ways of optimizing for memory archi-
tecture and vectorization and examine improvements pro-
posed in literature. We measure performance for different
input sets and workloads and compare our results to Intel’s
state-of-the-art Embree ray tracing framework [?]. Our fi-
nal result is a BVH implementation combining several tech-
niques to provide good performance on difficult input.

Related work. MacDonald et al. [?] introduce the sur-
face area heuristic (SAH), which is a cost function that es-
timates the query cost of a kD tree or BVH. We employ
a top-down, greedy optimization strategy of SAH in our
framework to create the BVH tree structure. Yoon et al.
[?] consider the impact of the memory layout of a BVH on
the caching behaviour and query performance. Bender et al.
[?] examine the efficiency of the van Emde Boas layout in
the context of cache efficiency of B-trees. Eisenacher et al.
[?] consider the effect of collecting and sorting incoherent
rays to better handle out-of-core scenarios in rendering. We
extend their work to in-core rendering and introduce a novel
efficient ray ordering scheme to extract hidden coherence.

2. BACKGROUND

Hierarchical spatial data structures in the context of triangle
intersection accelerate ray queries by bounding and culling.
Internally, the data structure is represented by a rooted tree.
Leaf nodes in the tree contain triangles, whereas internal
nodes contain a bounding shape, e.g. a sphere or axis aligned



Fig. 2. Illustration of a simple BVH data structure. Each
internal node has two children, as well as a link to a bound-
ing box enclosing them. Leaf nodes store a single link to a
triangle

bounding box. The tree is constrained such that for any in-
ternal node, the bounding shape must fully enclose all of its
children. Figure 2 illustrates the data structure.

Given this setup, we can efficiently answer a ray query
using recursive traversal. The procedure is as follows: Given
a node of the tree, we first test whether the ray intersects the
bounding shape of the node. If this is not the case, we can
immediately discard (cull) the entire subtree rooted at the
node. If the ray does intersect the node, we recursively re-
peat this procedure on its child nodes. When we reach a leaf
node, we perform the ray-triangle intersection.

On average, such a data structure will perform on the or-
der of O(logN) intersections of the ray with triangles in the
tree, where N is the number of triangles. Note however that
an asymptotic bound better than O(N) cannot be guaran-
teed due to the spatial structure of the problem - it is always
possible to produce a degenerate set of triangles such that
a worst-case ray will perform intersection tests with all of
the triangles in the tree. This is not usually a problem in
practice, however.

Coherent vs. Incoherent rays. In graphics, there is
typically a distinction between coherent and incoherent ray
distributions. Coherent rays are rays that share a common
origin and point in similar directions, as shown in Figure
3(i). These rays arise in Whitted-style ray tracers [?]. Co-
herent ray queries tend to perform better in tree structures
since it is likely that two successive ray queries will tra-
verse a similar path through the tree, meaning that there
is good temporal locality between queries. Coherent work
loads also allow for efficient vectorization by bundling mul-
tiple rays into ray packets and traversing them simultane-
ously [?].

Incoherent ray distributions arise in distributed ray trac-
ing, e.g. Monte Carlo path tracing, which is employed in
physically based rendering algorithms to achieve realistic
images; an example distribution is shown in Figure 3(ii).

(i) (ii)

Fig. 3. Coherent (i) and incoherent (ii) input sets

In incoherent work loads, successive ray queries generally
do not share similar origin or direction. This can make it
challenging to optimize for memory architecture or vector-
ization, since there is poor temporal locality or shared com-
putation between successive rays.

Cost Analysis. The performance of BVHs strongly de-
pends on the triangle distribution and the ray queries. For
our cost function, we choose to measure the number of bound-
ing shape intersections as well as the number of triangle in-
tersections. Since we know the number of FLOPS required
for each operation as well as the memory size of bounding
shapes and triangles, we can approximately estimate the ef-
ficiency of the implementation due to bandwidth and com-
putation.

3. PROPOSED METHOD

In this section, we will describe our optimization process
and the resulting implementations. Initially, we started by
naively implementing the BVH data structure and validating
it against unaccelerated intersection code. We then imple-
mented successively more optimized versions based on ob-
servation, measurement and literature. Ultimately we pro-
duced 11 different BVH implementations and introduced a
novel strategy to extracting hidden ray coherence. In the
following subsections, we will only present a subset of the
implemented versions for brevity.

3.1. Baseline implementation

For our baseline measurements, we implemented a naive
BVH that does not employ low-level optimizations. In this
implementation, each node consists of a bounding box, two
pointers to its two children and a pointer to a triangle. For
internal/leaf nodes, the triangle/child pointer is set to null.
Each node is allocated separately on the heap.

Although the naive BVH already results in several mag-
nitudes of speedup compared to not using an acceleration
structure at all, it has obvious issues: Allocating each node
separately incurs a large overhead on the heap as well as
memory segmentation. Also, the node structure is much



Fig. 4. Tree modification for vectorization of ray-triangle
intersection

larger than it needs to be, which has implications on mem-
ory consumption and bandwidth.

3.2. Optimizing bandwidth

Our first optimization efforts concentrated on reducing mem-
ory segmentation and the size of the data. Rather than allo-
cating each node individually on the heap, we instead store
the tree nodes in a large, contiguous 1D array. This already
improves performance due to less memory segmentation,
but also allows for more optimization. For example, we can
now use relative addressing, allowing us to replace the two
8 byte child pointers with two 4 byte indices. Also, since
we have control over how the nodes are laid out in the array,
we can enforce that the two children of an internal node are
always stored at two successive slots in the array. This way,
only the relative address of the first child needs to be stored,
since the second child is always in the consecutive slot. Ad-
ditionally, since the triangles are also stored in a flat array,
we can also convert the triangle pointer to a 4 byte index.

We note that a node utilizes either the child pointer or
the triangle pointer, but never both, meaning that we can
merge both the child and triangle pointer into one 4 byte
field and use a single bit to determine whether the node is a
leaf node or an internal node.

This reduces the size of the node structure from 40 bytes
to 28 bytes, a significant reduction.

3.3. Exploiting SIMD

The default binary tree structure does not allow for easy ap-
plication of SIMD instructions. This is because leaf nodes
only contain a single triangle, and single triangle-ray inter-
sections can only be poorly vectorized. To overcome this
issue, we introduce a tree modification that allows for better
vectorization, illustrated in Figure 4. In a first step, subtrees
containing four or less leaf nodes are identified. In a second
step, these subtrees are collapsed into a single leaf node con-
taining up to four triangles. The triangle data is then stored

Fig. 5. Tree modification for vectorization of ray-bounding
box intersection

in four wide SIMD vectors, allowing for efficient vectoriza-
tion by intersecting a ray with up to four triangles in parallel.

Vectorizing triangle intersections already leads to a con-
siderable increase in performance. However, there is still
more SIMD potential, in particular during the ray-bounding
box intersections. Since only a single bounding box is stored
in internal nodes, direct vectorization only leads to a marginal
increase in performance. However, we can apply the same
tree modification rules as for the leaf nodes, as illustrated in
Figure 5: First we identify subtrees with one parent and two
children, then we collapse each subtree into a single node.
Internal nodes now contain two bounding boxes, which can
be efficiently vectorized. Due to the large number of box
intersections during traversal, vectorization leads to an im-
pressive increase in performance.

3.4. Reducing TLB Pressure

One issue which was glossed over in Section 3.2 is the or-
der in which the tree nodes are stored in the 1D array. In
practice, nodes are commonly arranged according to their
depth-first or breadth-first ordering. Since BVHs can get
quite large, child nodes can end up being stored far away
in memory relative to their parents. In practice, this could
lead to frequent TLB misses when traversing through the
tree, as jumps across pages can occur at each traversal step.
To reduce the likelihood of this occurring, we implemented
a special tree layout from literature, the van Emde Boas
ordering[?], which is a cache-oblivious layout designed to
keep certain subtrees close together in memory. The order-
ing is recursively defined as follows:

The van Emde Boas ordering of a single node is the node
itself.

The van Emde Boas ordering of a tree T of depth dT
is the van Emde Boas ordering of the top subtree ending at
depth ddT

2 e followed by the van Emde Boas ordering of all
child subtrees rooted at depth ddT

2 e+ 1.
Informally, this guarantees that any subtree is likely to

be stored in a contiguous memory segment; in other words,
the traversal algorithm is likely to work in a locally contigu-



ous memory segment for many traversal steps before mak-
ing a large jump through memory.

Although this should increase performance in theory, in
practice, no performance improvement can be observed. It
appears that TLB misses do not play a significant role in the
traversal performance.

3.5. Exploiting hidden coherence

One of the observations we made during performance mea-
surements was that coherent input rays were consistently
faster than incoherent input rays. This makes sense, since
successive ray queries in coherent input sets are more likely
to traverse similar nodes of the tree, leading to good tem-
poral locality. Unfortunately, incoherent rays are far more
frequent and more important in practice than coherent rays,
meaning that exploiting temporal locality is not an easy task.

After further investigation and measurements, we found
that, while it is true that successive rays in the incoherent in-
put sets may traverse very different parts of the tree, it is not
true that there are no two rays in the incoherent input rays
that visit the same nodes during traversal. In fact, due to the
large size of the input, it is very likely that there are groups
of rays that visit the same nodes during traversal; however,
they do not usually occur close together in the input set,
meaning that they are traced far apart temporally.

Our intuition was that, if there was a way to find these
groups of rays that traverse similar nodes and trace them
successively, we should be able to achieve much improved
temporal locality and similar performance to the coherent
input sets. We term this property hidden coherence, since
the incoherent input sets contain coherent subsets that are
not immediately apparent.

To achieve this, we first have to define a grouping heuris-
tic to extract this hidden coherence. It is easy to see that for
two rays to traverse similar nodes in the tree, they must orig-
inate at points in space close together and point in very sim-
ilar directions. Therefore, we define our grouping heuristic
based on the spatial and angular similarity of rays.

Determining the similarity of rays and grouping them in
a global manner turned out to be a complex problem, since
it is not easy to find an efficient, effective and unique order-
ing. Ultimately we came up with a hierarchical reordering
scheme that recursively splits space and directions into sub-
regions. Figure 6(i) illustrates this idea for the ray origins:
In this 2D example, we first split space into four subregions
of equal size. Rays originating in the same subregion are
considered to be more similar to each other than to rays of
other subregions, and thus each subregion forms a group.
This is obviously a very coarse heuristic, and thus we split
the subregions again and again in a recursive manner until
each subregion only contains a single ray. This is illustrated
in Figure 6(ii). At each level of the recursive split, we con-
sider rays in the same subregion to be more similar to each

(i) (ii)

Fig. 6. Recursive spatial subdivision for a group of 2D rays

other than to rays of other subregions. This gives rise to a
natural, recursive definition of the query order of the rays:
The query order of a single ray is the ray itself. The query
order of a region split into four subregion is the query order
of the rays in the top-left subregion, followed by the query
order of the rays in the top-right subregion and so forth.
This means that if we pick any subregion at any level of the
recursion, the rays originating within that subregion will be
traced successively.

As it turns out, we can perform a very similar grouping
heuristic for the directions. This is because we can interpret
the unit length direction vectors as points on a sphere, and
we can apply the same hierarchical subdivision as we did
for the ray origins. In practice, we interleave steps of spa-
tial subdivision with steps of directional subdivision, to give
equal weight to origin and direction.

Although this ordering scheme is very effective at ex-
tracting hidden coherence, its straightforward implementa-
tion as a hierarchical reordering algorithm is unfortunately
very slow, and the benefits of improved temporal locality
is outweighed by the expensive reordering step. To rem-
edy this issue, we instead restated our reordering scheme in
terms of a sorting problem on integer keys, which can be
implemented efficiently.

We generate a single, 32 bit integer key for each ray
that incorporates our ordering scheme, which is illustrated
in Figure 7. At each subdivision step, we label the new
subregions with a two-bit string that describes which of the
four new subregions the ray origin lands in. The concatena-
tion of those two-bit strings, starting from the largest to the
smallest subregion, then results in an integer sorting key. If
we sort the rays by their keys in increasing order, then rays
that belong to the same subregion at any level will land at
successive slots in the sorted array. We can easily incor-
porate directions as well, by interleaving bit strings from
directional subdivision with bit strings from the spatial sub-
division.

In practice, we can generate the integer keys extremely
efficiently by exploiting the internal representation of the



00 01

10 11

01

01

00 01

10 11 10

(i)

(ii)

Fig. 7. Recursive sort key generation of a single ray for
similarity ordering

IEEE 754 single precision floating point; see code for de-
tails. To efficiently sort the rays, we employ a six digit radix
sort with five passes.

Note that the description of our algorithm focused on
a 2D domain for simplicity. However, it easily extends to
3D by using eight subregions instead of four and three-bit
strings instead of two-bit strings.

4. EXPERIMENTAL RESULTS

To measure the performance of our algorithms, we use a
combination of hardware performance counters and code
instrumentation. The following section describes our ex-
periments in detail and shows the relevant results.

Experimental setup. We ran all experiments on a re-
cent Intel-based platform shown in Table 1. All of our code
is compiled with the GCC 4.8.1 compiler, using standard
optimization flags (e.g. -O3). All experiments are exe-
cuted in a single-threaded environment to simplify the in-
terpretability of the results. As the BVH data structure is
inherently read-only, running queries in parallel is trivial
and commonly done in a rendering application.

Benchmarking framework. We have implemented a
benchmarking framework specifically targeted to measure
the performance of the implemented algorithms. For each
combination of an algorithm with a test set, the framework
runs two passes. In the first pass, rdtsc and hardware perfor-
mance counters [?] are used to measure the runtime and ad-
ditional performance indicators. For these measurements to
be accurate, the framework runs the same test multiple times
and generates statistics on the measured values (mean and
variance). In the second pass, the test is repeated with en-
abled code instrumentation to gather additional indicators.
Note that we used C++ templating to compile each algo-

CPU Intel Core i7-4770K 3.50 GHz
Microarch. Haswell
Frequency 3.50 GHz
Cores 8

RAM 16 GB

L1 Cache 32 kB, 8-way
L2 Cache 256 kB, 8-way
L3 Cache 8 MB, 16-way
Cache Lines 64 Bytes

OS Ubuntu Linux 64-bit (3.11.0 Kernel)

Table 1. Details of the platform used for the experiments

rithm twice, with and without code instrumentation calls, to
preclude any overhead in the runtime measurement.

Test sets. We use freely available 3d meshes, Sponza
(66447 triangles) and SanMiguel (7838629 triangles), and
created two sets of rays (coherent/incoherent) for each scene
using a Monte Carlo Path Tracer. This results in a total of 4
test sets: Sponza-Coherent, Sponza-Incoherent, SanMiguel-
Coherent and SanMiguel-Incoherent.

Performance counters. Generating valid data from per-
formance counters has proved to be extremely difficult in
our application. Our measurements on many different indi-
cators such as cache hit ratios, memory traffic, TLB misses
and others have mostly shown too much variance to be use-
ful for any kind of explanation on efficiency. This effec-
tively left us with nothing else than the runtime for compar-
ing the performance of our algorithms.

Code instrumentation. Using code instrumentation,
we were able to get some insight into our algorithms. Among
other values, we compute the size of the BVH in memory
and the number of box and triangle intersections.

Results. Figure 8 and 9 show the speedups achieved
with the different BVH implementations compared to the
naive implementation. Note that not all of our implementa-
tions are shown; measurements showed that most of our op-
timizations targeting data size and scalar code did not sig-
nificantly improve performance, and these code variations
are omitted from the graph for brevity.

Triangle SIMD. Code instrumentation shows that opti-
mizing triangle intersections using SIMD increases the ef-
fective number of computed intersections roughly by a fac-
tor of 2. This is due to less efficient culling, as leaf nodes
now contain 4 triangles instead of one. Still, using SIMD
for triangle intersections increases performance in all test
cases.

Full SIMD. Code instrumentation shows that the num-
ber of box intersections is roughly 15-20 times higher than
the number of triangle intersections. This clearly indicates
the potential for optimizing box intersections with SIMD.



0 1 2 3 4 5 6 7 8 9
Intel Embree

Sorted
van Emde Boas

Full SIMD
Triangle SIMD

Naive
Incoherent

Intel Embree
Sorted

van Emde Boas
Full SIMD

Triangle SIMD
Naive

Coherent

Speedup (Sponza)

Fig. 8. Comparison of total speedup for SIMD optimized
algorithms using the Sponza test sets

Indeed, we measure a dramatic increase in performance when
using SIMD for both box and triangle intersections in all test
cases.

van Emde Boas. Minimizing the number of TLB misses
should theoretically lead to a performance increase. How-
ever, our experiments show that there is no significant speedup.
Unfortunately, measuring the number of TLB misses using
performance counters did not result in further clarification,
as the measurements were not usable due to excessive vari-
ance.

Sorted. Extracting hidden coherency by pre-sorting the
query rays leads to a measurable performance increase in
the two incoherent test cases. For the coherent test cases,
sorting naturally decreases performance, as the sorting step
cannot be amortized by the improved query time.

5. CONCLUSIONS

We have studied various ways for optimizing the query time
in a BVH and implemented a series of increasingly sophis-
ticated algorithms. With our benchmarking framework we
have shown the gradual performance increases obtained with
each optimization step. We have reached similar perfor-
mance as a state-of-the-art implementation from Intel. Us-
ing a novel approach for ray reordering, we have further
increased performance when using incoherent rays. With
some additional work, we believe our implementation could
even beat the current state-of-the-art in some specific sce-
narios.

The countless hours we spent measuring performance
with help of hardware performance counters did not prove
to be very fruitful. We hoped to get evidence on how our al-
gorithms improve bandwidth usage but unfortunately were
not able to produce significant results. Using code instru-
mentation however, we were able to get a few additional

0 2 4 6 8 10 12
Intel Embree

Sorted
van Emde Boas

Full SIMD
Triangle SIMD

Naive
Incoherent

Intel Embree
Sorted

van Emde Boas
Full SIMD

Triangle SIMD
Naive

Coherent

Speedup (SanMiguel)

Fig. 9. Comparison of total speedup for SIMD optimized
algorithms using the SanMiguel test sets

insights and explain some of our benchmarking results.


